A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Convolutional Neural Network-Based Deep Learning Engine for Mastoidectomy Instrument Recognition and Movement Tracking. | LitMetric

Objective: To develop a convolutional neural network-based computer vision model to recognize and track 2 mastoidectomy surgical instruments-the drill and the suction-irrigator-from intraoperative video recordings of mastoidectomies.

Study Design: Technological development and model validation.

Setting: Academic center.

Methods: Ten 1-minute videos of mastoidectomies done for cochlear implantation by varying levels of resident surgeons were collected. For each video, containing 900 frames, an open-access computer vision annotation tool was used to annotate the drill and suction-irrigator class images with bounding boxes. A mastoidectomy instrument tracking module, which extracts the center coordinates of bounding boxes, was developed using a feature pyramid network and layered with DETECTRON, an open-access faster-region-based convolutional neural network. Eight videos were used to train the model, and 2 videos were used for testing. Outcome measures included Intersection over Union (IoU) ratio, accuracy, and average precision.

Results: For an IoU of 0.5, the mean average precision for the drill was 99% and 86% for the suction-irrigator. The model proved capable of generating maps of drill and suction-irrigator stroke direction and distance for the entirety of each video.

Conclusions: This computer vision model can identify and track the drill and suction-irrigator from videos of intraoperative mastoidectomies performed by residents with excellent precision. It can now be employed to retrospectively study objective mastoidectomy measures of expert and resident surgeons, such as drill and suction-irrigator stroke concentration, economy of motion, speed, and coordination, setting the stage for characterization of objective expectations for safe and efficient mastoidectomies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ohn.733DOI Listing

Publication Analysis

Top Keywords

drill suction-irrigator
16
convolutional neural
12
computer vision
12
neural network-based
8
mastoidectomy instrument
8
vision model
8
resident surgeons
8
bounding boxes
8
suction-irrigator stroke
8
drill
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!