Background: Different metabolic compounds give pepper leaves and fruits their diverse colors. Anthocyanin accumulation is the main cause of the purple color of pepper leaves. The light environment is a critical factor affecting anthocyanin biosynthesis. It is essential that we understand how to use light to regulate anthocyanin biosynthesis in plants.
Result: Pepper leaves were significantly blue-purple only in continuous blue light or white light (with a blue light component) irradiation treatments, and the anthocyanin content of pepper leaves increased significantly after continuous blue light irradiation. This green-to-purple phenotype change in pepper leaves was due to the expression of different genes. We found that the anthocyanin synthesis precursor-related genes PAL and 4CL, as well as the structural genes F3H, DFR, ANS, BZ1, and F3'5'H in the anthocyanin synthesis pathway, had high expression under continuous blue light irradiation. Similarly, the expression of transcription factors MYB1R1-like, MYB48, MYB4-like isoform X1, bHLH143-like, and bHLH92-like isoform X3, and circadian rhythm-related genes LHY and COP1, were significantly increased after continuous blue light irradiation. A correlation network analysis revealed that these transcription factors and circadian rhythm-related genes were positively correlated with structural genes in the anthocyanin synthesis pathway. Metabolomic analysis showed that delphinidin-3-O-glucoside and delphinidin-3-O-rutinoside were significantly higher under continuous blue light irradiation relative to other light treatments. We selected 12 genes involved in anthocyanin synthesis in pepper leaves for qRT-PCR analysis, and the accuracy of the RNA-seq results was confirmed.
Conclusions: In this study, we found that blue light and 24-hour irradiation together induced the expression of key genes and the accumulation of metabolites in the anthocyanin synthesis pathway, thus promoting anthocyanin biosynthesis in pepper leaves. These results provide a basis for future study of the mechanisms of light quality and photoperiod in anthocyanin synthesis and metabolism, and our study may serve as a valuable reference for screening light ratios that regulate anthocyanin biosynthesis in plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10960449 | PMC |
http://dx.doi.org/10.1186/s12870-024-04888-x | DOI Listing |
Front Physiol
January 2025
Regenerative Medicine Division, CHU de Quebec - Université Laval Research Centre, Quebec City, QC, Canada.
Introduction: Recent findings show that visible light, particularly blue light, stimulates melanogenesis in human skin, though the underlying mechanisms remain debated. This study aimed to determine the cell damage threshold of non-ionizing blue light on keratinocytes while preserving their ability to stimulate melanogenesis.
Methods: Human keratinocytes (N = 3) and melanocytes (N = 3) were isolated from skin samples of varying Fitzpatrick skin phototypes and irradiated with blue light (λpeak = 457 nm) and UVA light (λpeak = 385 nm).
Food Res Int
February 2025
College of Food Science and Engineering, Qingdao Agricultural University, China. Electronic address:
The study aimed to investigate the stability and anti-allergic efficacy of phycocyanin through the construction of microcapsules. Phycocyanin (PC), a blue pigment found in microalgae, has attracted significant attention due to its anti-allergic properties. However, it is susceptible to instability when exposed to light, heat, and changes in pH.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China.
Quasi-two-dimensional (quasi-2D) mixed-halide perovskites are a requisite for their applications in highly efficient blue perovskite light-emitting diodes (PeLEDs) owing to their strong quantum confinement effect and high exciton binding energy. The pace of quasi-2D blue PeLEDs is hindered primarily by two factors: challenges in precisely managing the phase distribution and defect-mediated nonradiative recombination losses. Herein, we utilize 2,2-diphenylethylamine (DPEA) with bulky steric hindrance to disturb the assembly process of a slender spacer host cation, 4-fluorophenylethylammonium (-F-PEA), enhancing phase distribution management in quasi-2D PeLEDs.
View Article and Find Full Text PDFTransl Vis Sci Technol
January 2025
Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
Purpose: To clarify the clinical and imaging characteristics of Candida keratitis using in vivo confocal microscopy (IVCM) for improved early diagnosis and management.
Methods: A retrospective study of 40 patients with Candida keratitis at Beijing Tongren Hospital from January 2015 to December 2023 was conducted. Data included demographics, risk factors, clinical assessments, lab tests, and IVCM images.
Lasers Med Sci
January 2025
Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province, 230601, P.R. China.
Skin flap transplantation is a conventional wound repair method in plastic and reconstructive surgery, but infection and ischemia are common complications. Photobiomodulation (PBM) therapy has shown promise for various medical problems, including wound repair processes, due to its capability to accelerate angiogenesis and relieve inflammation. This study investigated the effect of red and blue light on the survival of random skin flaps in methicillin-resistant Staphylococcus aureus (MRSA)-infected Sprague Dawley (SD) rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!