Neighborhood characteristics including housing status can profoundly influence health. Recently, increasing attention has been paid to present-day impacts of "redlining," or historic area classifications that indicated less desirable (redlined) areas subject to decreased investment. Scholarship of redlining and health is emerging; limited guidance exists regarding optimal approaches to measuring historic redlining in studies of present-day health outcomes. We evaluated how different redlining approaches (map alignment methods) influence associations between redlining and health outcomes. We first identified 11 existing redlining map alignment methods and their 37 logical extensions, then merged these 48 map alignment methods with census tract life expectancy data to construct 9696 linear models of each method and life expectancy for all 202 redlined cities. We evaluated each model's statistical significance and R values and compared changes between historical and contemporary geographies and populations using Root Mean Squared Error (RMSE). RMSE peaked with a normal distribution at 0.175, indicating persistent difference between historical and contemporary geographies and populations. Continuous methods with low thresholds provided higher neighborhood coverage. Weighting methods had more significant associations, while high threshold methods had higher R values. In light of these findings, we recommend continuous methods that consider contemporary population distributions and mapping overlap for studies of redlining and health. We developed an R application {holcmapr} to enable map alignment method comparison and easier method selection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11052981PMC
http://dx.doi.org/10.1007/s11524-024-00841-3DOI Listing

Publication Analysis

Top Keywords

map alignment
16
redlining health
12
alignment methods
12
health outcomes
8
life expectancy
8
historical contemporary
8
contemporary geographies
8
geographies populations
8
continuous methods
8
redlining
7

Similar Publications

Cardiac implantable electronic devices (CIEDs) generate substantial data, often stored in image or PDF formats. Remote monitoring, now an integral component of patient care, places considerable administrative burdens on clinicians and staff, in large part due to the challenge of integrating these data seamlessly into electronic health records. Since 2006, the Heart Rhythm Society, in collaboration with the CIED industry, has led an initiative to establish a unified standard nomenclature.

View Article and Find Full Text PDF

Self-interactive learning: Fusion and evolution of multi-scale histomorphology features for molecular traits prediction in computational pathology.

Med Image Anal

January 2025

Nuffield Department of Medicine, University of Oxford, Oxford, UK; Department of Engineering Science, University of Oxford, Oxford, UK; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK; Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford National Institute for Health Research (NIHR) Biomedical Research Centre, Oxford, UK. Electronic address:

Predicting disease-related molecular traits from histomorphology brings great opportunities for precision medicine. Despite the rich information present in histopathological images, extracting fine-grained molecular features from standard whole slide images (WSI) is non-trivial. The task is further complicated by the lack of annotations for subtyping and contextual histomorphological features that might span multiple scales.

View Article and Find Full Text PDF

Objective: To provide up-to-date European Society of Urogenital Radiology (ESUR) guidelines for staging and follow-up of patients with ovarian cancer (OC).

Methods: Twenty-one experts, members of the female pelvis imaging ESUR subcommittee from 19 institutions, replied to 2 rounds of questionnaires regarding imaging techniques and structured reporting used for pre-treatment evaluation of OC patients. The results of the survey were presented to the other authors during the group's annual meeting.

View Article and Find Full Text PDF

Residual Vision Transformer and Adaptive Fusion Autoencoders for Monocular Depth Estimation.

Sensors (Basel)

December 2024

Institute of Computer and Communication Engineering, Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan.

Precision depth estimation plays a key role in many applications, including 3D scene reconstruction, virtual reality, autonomous driving and human-computer interaction. Through recent advancements in deep learning technologies, monocular depth estimation, with its simplicity, has surpassed the traditional stereo camera systems, bringing new possibilities in 3D sensing. In this paper, by using a single camera, we propose an end-to-end supervised monocular depth estimation autoencoder, which contains an encoder with a structure with a mixed convolution neural network and vision transformers and an effective adaptive fusion decoder to obtain high-precision depth maps.

View Article and Find Full Text PDF

Number and space are inherently related. Previous research has provided evidence that numbers are aligned to a so-called "mental number line", which is malleable and affected by cultural factors mostly linked to literacy-related habits. However, preverbal humans and non-human animals also map numerosities into space, in a consistent left-to-right direction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!