Oestradiol and osteoclast differentiation: Effects on p53 and mitochondrial metabolism.

Eur J Clin Invest

CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.

Published: June 2024

Background: Oestrogen deficiency increases bone resorption, contributing to osteoporosis development. Yet, the mechanisms mediating the effects of oestrogen on osteoclasts remain unclear. This study aimed to elucidate the early metabolic alteration induced by RANKL, the essential cytokine in osteoclastogenesis and 17-beta-oestradiol (E) on osteoclast progenitor cells, using RAW 264.7 macrophage cell line and primary bone marrow-derived macrophages as biological models.

Results: This research demonstrated that, in osteoclast precursors, RANKL stimulates complex I activity, oxidative phosphorylation (OXPHOS) and mitochondria-derived ATP production as early as 3 h of exposure. This effect on mitochondrial bioenergetics is associated with an increased capacity to oxidize TCA cycle substrates, fatty acids and amino acids. E inhibited all effects of RANKL on mitochondria metabolism. In the presence of RANKL, E also decreased cell number and stimulated the mitochondrial-mediated apoptotic pathway, detected as early as 3 h. Further, the pro-apoptotic effects of E during osteoclast differentiation were associated with an accumulation of p392S-p53 in mitochondria.

Conclusions: These findings elucidate the early effects of RANKL on osteoclast progenitor metabolism and suggest novel p53-mediated mechanisms that contribute to postmenopausal osteoporosis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/eci.14195DOI Listing

Publication Analysis

Top Keywords

osteoclast differentiation
8
elucidate early
8
osteoclast progenitor
8
early 3 h
8
effects rankl
8
effects
5
rankl
5
oestradiol osteoclast
4
differentiation effects
4
effects p53
4

Similar Publications

Indole-3-propionic acid (IPA), a metabolite produced by gut microbiota through tryptophan metabolism, has recently been identified as playing a pivotal role in bone metabolism. IPA promotes osteoblast differentiation by upregulating mitochondrial transcription factor A (Tfam), contributing to increased bone density and supporting bone repair. Simultaneously, it inhibits the formation and activity of osteoclasts, reducing bone resorption, possibly through modulation of the nuclear factor-κB (NF-κB) pathway and downregulation of osteoclast-associated factors, thereby maintaining bone structural integrity.

View Article and Find Full Text PDF
Article Synopsis
  • The high failure rate of surgical repairs for tendinopathies has led researchers to explore adjunct therapies, specifically exosomes (EVs) from mesenchymal stromal cells (MSCs) which have shown promise in animal studies for enhancing tendon healing.
  • Research indicates that exosomes from tendon-specific cells (tenocytes) may be more effective than MSC-derived exosomes in promoting tendon healing due to their distinct functional properties.
  • The study found that tenocyte-derived exosomes (TdEVs) altered macrophage responses in ways that support tendon healing, while MSC-derived exosomes triggered different pathways related to inflammation and oxidative stress, highlighting the importance of the source of EVs in tendon repair processes.
View Article and Find Full Text PDF

Zoledronic Acid Regulates Osteoclasts via miR-483-5p in the BRONJ.

Oral Dis

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.

Objectives: Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a severe complication of bisphosphonate therapy, with unclear mechanisms. This study investigates the regulatory impact of zoledronic acid (ZOL) on osteoclasts and microRNA (miRNA) expression.

Materials And Methods: Raw264.

View Article and Find Full Text PDF

Heavy mechanical force decelerates orthodontic tooth movement via Piezo1-induced mitochondrial calcium down-regulation.

Genes Dis

March 2025

College of Stomatology, Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.

Orthodontic tooth movement (OTM) depends on periodontal ligament cells (PDLCs), which sense biomechanical stimuli and initiate alveolar bone remodeling. Light (optimal) forces accelerate OTM, whereas heavy forces decelerate it. However, the mechanisms by which PDLCs sense biomechanical stimuli and affect osteoclastic activities under different mechanical forces (MFs) remain unclear.

View Article and Find Full Text PDF

Multifaceted roles of IL-17 in bone and tendon health.

Int J Biol Macromol

January 2025

Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China. Electronic address:

The interleukin-17 (IL-17) family, encompassing IL-17A to IL-17F, plays pivotal roles across various biomedical fields. IL-17A, a prominent cytokine, has garnered significant attention. However, the pathological effects of IL-17 can often be unpredictable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!