Early life exposure to environmental pollutants such as arsenic (As) can increase the risk of cancers in the offspring. In an earlier study, we showed that only prenatal As exposure significantly increases epidermal stem cell proliferation and accelerates skin tumorigenesis in BALB/c mouse offspring. In the present work, we have examined the role of As-conditioned dermal fibroblasts (DFs) in creating pro-tumorigenic niches for Keratinocyte stem cells (KSCs) in the offspring. DFs isolated from prenatally exposed animals showed increased levels of activation markers (α-SMA, Fibronectin, Collagen IV), induction of ten-eleven translocation methylcytosine dioxygenase 1(TET1), and secreted high levels of niche modifying IL-6. This led to enhanced proliferation, migration, and survival of KSCs. Increased IL-6 production in As-conditioned fibroblast was driven through TET1 mediated 5-mC to 5-hmC conversion at -698/-526 and -856/-679 region on its promoter. IL-6 further acted through downstream activation of JAK2-STAT3 signaling, promoting epithelial-to-mesenchymal transition (EMT) in KSCs. Inhibition of pSTAT3 induced by IL-6 reduced the EMT process in KSCs resulting in a significant decrease in their proliferation, migration, and colony formation. Our results indicate that IL-6 produced by prenatally conditioned fibroblasts plays a major role in regulating the KSC niche and promoting skin tumor development in As-exposed offspring.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10959921 | PMC |
http://dx.doi.org/10.1038/s41598-024-56547-8 | DOI Listing |
Unlabelled: Quantitative understanding of mitochondrial heterogeneity is necessary for elucidating the precise role of these multifaceted organelles in tumor cell development. We demonstrate an early mechanistic role of mitochondria in initiating neoplasticity by performing quantitative analyses of structure-function of single mitochondrial components coupled with single cell transcriptomics. We demonstrate that the large Hyperfused-Mitochondrial-Networks (HMNs) of keratinocytes promptly get converted to the heterogenous Small-Mitochondrial-Networks (SMNs) as the stem cell enriching dose of the model carcinogen, TCDD, depolarizes mitochondria.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China.
Purpose: To develop a method for enriching keratinocyte progenitor cells (KPCs) and establish a limbal niche (LN)-mediated transdifferentiation protocol of KPCs into corneal epithelial cells.
Methods: Limbal niche cells (LNCs) were isolated from limbal tissues through enzymatic digestion and characterized. Conditioned medium from LNCs cultures was collected.
Arch Dermatol Res
January 2025
School of Public Health, Shanxi Medical University, Taiyuan, China.
Psoriasis is an inflammatory dermatosis that features overproliferation and inflammatory reaction of keratinocytes. A study reported that IL-22 is involved in the pathogenesis of psoriasis by mediating miR-124 to regulate the expression of fibroblast growth factor receptor 2 in keratinocytes. A microRNA may target multiple target genes.
View Article and Find Full Text PDFRegen Ther
March 2025
Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan.
Objective: The skin is a complex organ that includes various stem cell populations. Current approaches for non-healing skin defects are sometimes inadequate and many attempts have been made to regenerate skin integrity. The aim of this review is to bridge the gap between basic research and clinical application of skin integrity regeneration.
View Article and Find Full Text PDFJCI Insight
January 2025
Department of Anatomy and Cell Biology.
The oral mucosa undergoes daily insults, and stem cells in the epithelial basal cell layer regenerate gingiva tissue to maintain oral health. The Iroquois Homeobox 1 (IRX1) protein is expressed in the stem cell niches in human/mouse oral epithelium and mesenchyme under homeostasis. We found that Irx1+/- heterozygous (Het) mice have delayed wound closure, delayed morphological changes of regenerated epithelium, and defective keratinocyte proliferation and differentiation during wound healing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!