Deep vein thrombosis (DVT) is a common complication in patients with lower extremity fractures. Once it occurs, it will seriously affect the quality of life and postoperative recovery of patients. Therefore, early prediction and prevention of DVT can effectively improve the prognosis of patients. This study constructed different machine learning models to explore their effectiveness in predicting DVT. Five prediction models were applied to the study, including Extreme Gradient Boosting (XGBoost) model, Logistic Regression (LR) model, RandomForest (RF) model, Multilayer Perceptron (MLP) model, and Support Vector Machine (SVM) model. Afterwards, the performance of the obtained prediction models was evaluated by area under the curve (AUC), accuracy, sensitivity, specificity, F1 score, and Kappa. The prediction performances of the models based on machine learning are as follows: XGBoost model (AUC = 0.979, accuracy = 0.931), LR model (AUC = 0.821, accuracy = 0.758), RF model (AUC = 0.970, accuracy = 0.921), MLP model (AUC = 0.830, accuracy = 0.756), SVM model (AUC = 0.713, accuracy = 0.661). On our data set, the XGBoost model has the best performance. However, the model still needs external verification research before clinical application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10960026PMC
http://dx.doi.org/10.1038/s41598-024-57711-wDOI Listing

Publication Analysis

Top Keywords

machine learning
12
model
12
xgboost model
12
deep vein
8
vein thrombosis
8
lower extremity
8
extremity fractures
8
prediction models
8
mlp model
8
svm model
8

Similar Publications

Exploring the role of oxidative stress in carotid atherosclerosis: insights from transcriptomic data and single-cell sequencing combined with machine learning.

Biol Direct

January 2025

National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China.

Background: Carotid atherosclerotic plaque is the primary cause of cardiovascular and cerebrovascular diseases. It is closely related to oxidative stress and immune inflammation. This bioinformatic study was conducted to identify key oxidative stress-related genes and key immune cell infiltration involved in the formation, progression, and stabilization of plaques and investigate the relationship between them.

View Article and Find Full Text PDF

Unveiling new therapeutic horizons in rheumatoid arthritis: an In-depth exploration of circular RNAs derived from plasma exosomes.

J Orthop Surg Res

January 2025

Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou, Jiangsu, 225000, China.

Rheumatoid arthritis (RA), a chronic inflammatory joint disease causing permanent disability, involves exosomes, nanosized mammalian extracellular particles. Circular RNA (circRNA) serves as a biomarker in RA blood samples. This research screened differentially expressed circRNAs in RA patient plasma exosomes for novel diagnostic biomarkers.

View Article and Find Full Text PDF

AiGPro: a multi-tasks model for profiling of GPCRs for agonist and antagonist.

J Cheminform

January 2025

School of Systems Biomedical Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, 06978, Seoul, Republic of Korea.

G protein-coupled receptors (GPCRs) play vital roles in various physiological processes, making them attractive drug discovery targets. Meanwhile, deep learning techniques have revolutionized drug discovery by facilitating efficient tools for expediting the identification and optimization of ligands. However, existing models for the GPCRs often focus on single-target or a small subset of GPCRs or employ binary classification, constraining their applicability for high throughput virtual screening.

View Article and Find Full Text PDF

Detection of early relapse in multiple myeloma patients.

Cell Div

January 2025

Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.

Background: Multiple myeloma (MM) represents the second most common hematological malignancy characterized by the infiltration of the bone marrow by plasma cells that produce monoclonal immunoglobulin. While the quality and length of life of MM patients have significantly increased, MM remains a hard-to-treat disease; almost all patients relapse. As MM is highly heterogenous, patients relapse at different times.

View Article and Find Full Text PDF

Background: Amebiasis represents a significant global health concern. This is especially evident in developing countries, where infections are more common. The primary diagnostic method in laboratories involves the microscopy of stool samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!