Histone H2B monoubiquitination (at Lys120 in humans) regulates transcription elongation and DNA repair. In humans, H2B monoubiquitination is catalyzed by the heterodimeric Bre1 complex composed of Bre1A/RNF20 and Bre1B/RNF40. The Bre1 proteins generally function as tumor suppressors, while in certain cancers, they facilitate cancer cell proliferation. To obtain structural insights of H2BK120 ubiquitination and its regulation, we report the cryo-electron microscopy structure of the human Bre1 complex bound to the nucleosome. The two RING domains of Bre1A and Bre1B recognize the acidic patch and the nucleosomal DNA phosphates around SHL 6.0-6.5, which are ideally located to recruit the E2 enzyme and ubiquitin for H2BK120-specific ubiquitination. Mutational experiments suggest that the two RING domains bind in two orientations and that ubiquitination occurs when Bre1A binds to the acidic patch. Our results provide insights into the H2BK120-specific ubiquitination by the Bre1 proteins and suggest that H2B monoubiquitination can be regulated by nuclesomal DNA flexibility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10959955PMC
http://dx.doi.org/10.1038/s41467-024-46910-8DOI Listing

Publication Analysis

Top Keywords

bre1 complex
12
h2b monoubiquitination
12
structure human
8
human bre1
8
complex bound
8
bound nucleosome
8
bre1 proteins
8
ring domains
8
acidic patch
8
h2bk120-specific ubiquitination
8

Similar Publications

Swd2/Cps35 determines H3K4 tri-methylation via interactions with Set1 and Rad6.

BMC Biol

May 2024

Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.

Background: Histone H3K4 tri-methylation (H3K4me3) catalyzed by Set1/COMPASS, is a prominent epigenetic mark found in promoter-proximal regions of actively transcribed genes. H3K4me3 relies on prior monoubiquitination at the histone H2B (H2Bub) by Rad6 and Bre1. Swd2/Cps35, a Set1/COMPASS component, has been proposed as a key player in facilitating H2Bub-dependent H3K4me3.

View Article and Find Full Text PDF

Tissue development, homeostasis, and repair all require efficient progenitor expansion. Lysine-specific demethylase 1 (Lsd1) maintains plastic epigenetic states to promote progenitor proliferation while overexpressed Lsd1 protein causes oncogenic gene expression in cancer cells. However, the precise regulation of Lsd1 protein expression at the molecular level to drive progenitor differentiation remains unclear.

View Article and Find Full Text PDF

Histone H2B monoubiquitination (at Lys120 in humans) regulates transcription elongation and DNA repair. In humans, H2B monoubiquitination is catalyzed by the heterodimeric Bre1 complex composed of Bre1A/RNF20 and Bre1B/RNF40. The Bre1 proteins generally function as tumor suppressors, while in certain cancers, they facilitate cancer cell proliferation.

View Article and Find Full Text PDF

Mechanism of histone H2B monoubiquitination by Bre1.

Nat Struct Mol Biol

November 2023

Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Monoubiquitination of histone H2B-K120/123 plays several roles in regulating transcription, DNA replication and the DNA damage response. The structure of a nucleosome in complex with the dimeric RING E3 ligase Bre1 reveals that one RING domain binds to the nucleosome acidic patch, where it can position the E2 ubiquitin conjugating enzyme Rad6, while the other RING domain contacts the DNA. Comparisons with H2A-specific E3 ligases suggest a general mechanism of tuning histone specificity via the non-E2-binding RING domain.

View Article and Find Full Text PDF

The Complex of Proteins Associated with Set1 (COMPASS) methylates lysine K4 on histone H3 (H3K4) and is conserved from yeast to humans. Its subunits and regulatory roles in the meningitis-causing fungal pathogen remain unknown. Here we identified the core subunits of the COMPASS complex in and and confirmed their conserved roles in H3K4 methylation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!