Objective: We believe our poly(lactic acid) (PLA) microbubbles are well suited for therapeutic delivery to spinal cord injury (SCI) using ultrasound-triggered bursting. We investigated the feasibility of clinical ultrasound bursting in situ, the optimal bursting parameters in vitro and the loading and release of a model bio-active DNA.
Methods: Microbubbles were tested using clinical ultrasound in a rat cadaver SCI model. Burst pressure thresholds were determined using the change in enhancement after ultrasound exposure. Resonance frequency, acoustic enhancement, sizing and morphology were evaluated by comparing two microbubble porogens, ammonium carbonate and ammonium carbamate. Oligonucleotides were loaded into the shell and released using the found optimized ultrasound bursting parameters.
Results: In situ imaging and bursting were successful. In vitro bursting thresholds using frequencies 1, 2.25 and 5 MHz were identified between peak negative pressures 0.2 and 0.5 MPa, believed to be safe for spinal cord. The pressure threshold decreased with decreasing frequencies. PLA bursting was optimized near the resonance frequency of 2.5 to 3.0 MHz using 2.25 MHz and not at lower frequencies. PLA microbubbles, initially with a mean size of approximately 2 µm, remained in one piece, collapsed to between 0.5 and 1 µm and did not fragment. Significantly more oligonucleotide was released after ultrasound bursting of loaded microbubbles. Microbubble-sized debris was detected when using ammonium carbamate, leading to inaccurate microbubble concentration measurements.
Conclusion: PLA microbubbles made with ammonium carbonate and burst at appropriate parameters have the potential to safely improve intrathecal therapeutic delivery to SCI using targeted ultrasound.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566347 | PMC |
http://dx.doi.org/10.1016/j.ultrasmedbio.2024.02.014 | DOI Listing |
Sci Rep
December 2024
Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
Chronic complete spinal cord injury (SCI) is difficult to treat because of scar formation and cavitary lesions. While human iPS cell-derived neural stem/progenitor cell (hNS/PC) therapy shows promise, its efficacy is limited without the structural support needed to address cavitary lesions. Our study investigated a combined approach involving surgical scar resection, decellularized extracellular matrix (dECM) hydrogel as a scaffold, and hNS/PC transplantation.
View Article and Find Full Text PDFSci Rep
December 2024
Radiology Department, Children's Hospital of Chongqing Medical University, Yuzhong District Zhongshan 2 Road 136#, Chongqing, 400014, China.
This study aimed to identify imaging risk factors for spinal cord injury without radiologic abnormalities (SCIWORA) in children. We retrospectively analyzed the medical records and magnetic resonance imaging (MRI) findings of children with SCIWORA admitted to our hospital between January 1, 2012, and September 30, 2022. Univariate and binary logistic regression analyses were used to evaluate the prognostic impact of various factors including MRI type, maximum cross-sectional area of spinal cord injury, injury length, injury signal intensity ratio.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan.
Visual hallucinations (VH) and pareidolia, a type of minor hallucination, share common underlying mechanisms. However, the similarities and differences in their brain regions remain poorly understood in Parkinson's disease (PD). A total of 104 drug-naïve PD patients underwent structural MRI and were assessed for pareidolia using the Noise Pareidolia Test (NPT) were enrolled.
View Article and Find Full Text PDFWorld Neurosurg
December 2024
Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China. Electronic address:
J Pediatr Surg
December 2024
Children's Hospital New Orleans, Department of Surgery, New Orleans LA 70118, USA; Louisiana State University Health Sciences Center, Department of Surgery, Division of Pediatric Surgery, New Orleans LA 70112, USA. Electronic address:
Introduction: Traumatic injury is the leading cause of pediatric mortality and morbidity in the United States. While behavioral impairments of children after traumatic brain injury (TBI) have been described, outcomes following traumatic spinal cord injury (SCI) and multi-trauma (MT) are less known. We aimed to address the prevalence of behavioral and neuropsychiatric disorders in pediatric and adolescent trauma patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!