Anaerobic ammonium oxidation (anammox) is an energy-efficient method for nitrogen removal that opens the possibility for energy-neutral wastewater treatment. Research on anammox over the past decade has primarily focused on its implementation in domestic wastewater treatment. However, emerging studies are now expanding its use to novel biotechnological applications and wastewater treatment processes. This review highlights recent advances in the anammox field that aim to overcome conventional bottlenecks, and explores novel and niche-specific applications of the anammox process. Despite the promising results and potential of these advances, challenges persist for their real-world implementation. This underscores the need for a transition from laboratory achievements to practical, scalable solutions for wastewater treatment which mark the next crucial phase in the evolution of anammox research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tibtech.2024.02.013 | DOI Listing |
Water Sci Technol
January 2025
Norwegian University of Life Sciences, Department of Building and Environmental Technology, P.O. Box 5003, 1430 Ås, Norway.
The need for stringent phosphorus removal from domestic wastewater is increasing to mitigate eutrophication, while efficient phosphate reuse is critical due to the global phosphate crisis. Combining aluminum sulfate (ALS) with high molecular weight organic polymers achieved 95-99% removal of particles, turbidity, and phosphates, reducing ALS usage by 40%. We propose mechanisms to explain the enhanced treatment efficiency.
View Article and Find Full Text PDFWater Sci Technol
January 2025
Qingdao Branch of Luoyang Ship Material Research Institute, 149-1, Zhuzhou Road, Laoshan District, Qingdao, Shandong, China; Sunrui Marine Environment Engineering Co., Ltd, Qingdao, Shandong, China.
Nowadays, performance studies on the amperometric total residual oxidant (TRO) sensor are only in the bench test stage and have not been conducted under specific maritime conditions with Ballast Water Management System (BWMS). In this study, the application of the amperometric TRO sensor in land-based biological efficacy (BE) testing, operation and maintenance (O&M) testing, as well as shipboard (SB) testing, was explored by comparing with the existing di-phenylene-diamine (DPD) TRO sensor. The results showed that the average TRO measurement deviation between the amperometric sensor and the DPD sensor was within ±10% in valid BE test cycles and the O&M testing exceeding 47 operating hours.
View Article and Find Full Text PDFWater Sci Technol
January 2025
Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
One of the most costly stages of activated sludge wastewater treatment plants is the treatment and dewatering of waste sludge. Chemical conditioning of sludge, as one of the most widespread methods to enhance sludge dewaterability, accounts for a significant portion of operational expenses due to the consumption of expensive polymeric compounds. This research aims to assess the cost-effectiveness of ochre soil, modified with hydrochloric acid, as an affordable mineral for conditioning waste sludge in an activated sludge system.
View Article and Find Full Text PDFWater Sci Technol
January 2025
China Construction Fifth Engineering Division Co., Ltd, Changsha, Hunan 410004, China.
Road runoff underwent treatment using a filter filled with sludge from drinking water treatment plants to assess its capacity for removing dissolved organic matter (DOM). This evaluation utilized resin fractionation, gel permeation chromatography, three-dimensional excitation-emission matrix fluorescence spectroscopy, and UV-Visible spectroscopy. The filter demonstrated enhanced efficiency in removing dissolved organic carbon, achieving removal rates between 70 and 80%.
View Article and Find Full Text PDFWater Sci Technol
January 2025
Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
This work focused on the biotreatment of wastewater and contaminated soil in a used oil recycling plant located in Bizerte. A continuous stirred tank reactor (CSTR) and a trickling filter (TF) were used to treat stripped and collected wastewater, respectively. The CSTR was started up and stabilized for 90 days.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!