Objective: It is unclear whether β-asarone has a good antidepressant effect and what is the main mechanism in Depression in Parkinson's disease (DPD) model rats.

Methods: In this study, DPD model rats were screened from 6-OHDA induced rats by sucrose preference test (SPT) and forced swimming test (FST). DPD model rats were divided into eight groups: model group, pramipexole group, β-asarone low-dose group (β-asarone 7.5 group), β-asarone medium-dose group (β-asarone 15 group), β-asarone high-dose group (β-asarone 30 group), 3-MA group, rapamycin group, and PI3K inhibitor group. 28 days after the end of treatment, open field test (OFT), SPT and FST were conducted in rats. The level of α-synuclein (α-syn) in the striatum was determined by enzyme-linked immunosorbent assay (ELISA). The expression of Beclin-1, p62 in the striatum was determined by western blot. The expression of PI3K, p-PI3K, Akt, p-Akt, mTOR, p-mTOR, Beclin-1, and p62 in the hippocampus was determined by western blot. The spine density of neurons in the hippocampus was detected by golgi staining.

Results: The results showed that 4-week oral administration of β-asarone improve the motor and depressive symptoms of DPD model rats, and decrease the content of α-syn in the striatum. β-asarone inhibited the expression of autophagy in the striatum of DPD model rats. Furthermore, β-asarone decreased the levels of Beclin-1 protein, increased the expression of p62, p-PI3K, p-AKT, and p-mTOR, and improved the density of neuron dendritic spine in the hippocampus.

Conclusions: We concluded that β-asarone might improve the behavior of DPD model rats by activating the PI3K/Akt/mTOR pathway, inhibiting autophagy and protecting neuron.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2024.114966DOI Listing

Publication Analysis

Top Keywords

dpd model
24
group β-asarone
24
model rats
20
β-asarone
12
β-asarone group
12
group
11
activating pi3k/akt/mtor
8
pi3k/akt/mtor pathway
8
model
8
depression parkinson's
8

Similar Publications

Deapioplatycodin D (DPD) is a triterpenoid saponin natural compound isolated from the Chinese herb Platycodon grandiflorum that has antiviral and antitumor properties. This study aimed to investigate the effects of DPD on glioblastoma (GBM) cells and to determine its intrinsic mechanism of action. Using a CCK8 assay, it was found that DPD significantly inhibited the growth of GBM cells.

View Article and Find Full Text PDF

Background: Castration of adult male rats led to the development of osteoporosis. Oxidative stress and inflammatory factors have been identified as potential causative factors. Notably, oxymatrine (OMT) possesses potent anti-inflammatory and antioxidant activities.

View Article and Find Full Text PDF

Gaucher Disease (GD) is a rare genetic disorder characterized by a deficiency in the enzyme glucocerebrosidase, leading to the accumulation of glucosylceramide in various cells, including red blood cells (RBCs). This accumulation results in altered biomechanical properties and rheological behavior of RBCs, which may play an important role in blood rheology and the development of bone infarcts, avascular necrosis (AVN) and other bone diseases associated with GD. In this study, dissipative particle dynamics (DPD) simulations are employed to investigate the biomechanics and rheology of blood and RBCs in GD under various flow conditions.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is associated with a poor prognosis, and biomarkers to guide treatment decisions in PDAC are generally lacking. Intratumoural expression of dihydropyrimidine dehydrogenase (DPD) is a potential prognostic parameter in patients with PDAC undergoing surgical resection and postoperative chemotherapy. In the present study, DPD was analysed by immunohistochemistry of a tissue microarray platform including a real-world cohort of 495 patients with PDAC who had undergone resection with curative intent at any of three tertiary centres, including Northern, Western and Southeastern regions of Sweden, between 1993 and 2019.

View Article and Find Full Text PDF

Dihydropyrimidine dehydrogenase (DPD, encoded by the gene) is the rate-limiting enzyme for the detoxification of fluoropyrimidines (FLs). Rs4294451 is a regulatory polymorphism that has recently been functionally characterized and associated with increased DPD expression in the liver. The aim of the present study was to test the clinical implications of being a carrier of rs4294451 in a cohort of 645 FL-treated colorectal cancer patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!