Evaluation of D-dimer and prothrombin time in alcohol related liver cirrhosis with comparison of machine learning analyses.

Int J Med Inform

Department of Laboratory Medicine, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea. Electronic address:

Published: June 2024

Objectives: Liver cirrhosis (LC) can be caused by obesity, alcohol consumption, viral infection, and autoimmune disease. Early diagnosis and management of LC is important for patient quality of life. Non-invasive diagnostic methods are useful for predicting the current status and mortality risk of LC. The purpose of this study is to identify relevant diagnostic factors measured in routine laboratory test of alcohol-related liver cirrhosis (ALC) patients.

Methods: This study analyzed data from 127 patients with ALC, including their laboratory test results and clinical information, including coagulation parameters, hematologic parameters, and biochemical parameters. These data were used to compare the performance of the prediction models from three machine learning algorithms including K-nearest neighbor (KNN), support vector machine (SVM), and random forest (RF).

Results: Higher Model for End-stage Liver Disease (MELD) score were associated with prothrombin time (PT) and D-dimer. Logistic and multiple linear regression analyses revealed significant factors predicting mortality in the MELD group. Machine learning approaches were used to predict death in ALC patients using some laboratory parameters associated with mortality. The prediction model based on SVM exhibited better prediction performance than others.

Conclusion: PT and D-dimer were the factors that were most strongly associated with 90-day mortality, and machine learning methods can create prediction models with good predictive power.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijmedinf.2024.105407DOI Listing

Publication Analysis

Top Keywords

machine learning
16
liver cirrhosis
12
prothrombin time
8
laboratory test
8
prediction models
8
machine
5
evaluation d-dimer
4
d-dimer prothrombin
4
time alcohol
4
liver
4

Similar Publications

Enhanced brain tumor detection and segmentation using densely connected convolutional networks with stacking ensemble learning.

Comput Biol Med

January 2025

Emerging Technologies Research Lab (ETRL), College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia; Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia. Electronic address:

- Brain tumors (BT), both benign and malignant, pose a substantial impact on human health and need precise and early detection for successful treatment. Analysing magnetic resonance imaging (MRI) image is a common method for BT diagnosis and segmentation, yet misdiagnoses yield effective medical responses, impacting patient survival rates. Recent technological advancements have popularized deep learning-based medical image analysis, leveraging transfer learning to reuse pre-trained models for various applications.

View Article and Find Full Text PDF

Ligand-Conditioned Side Chain Packing for Flexible Molecular Docking.

J Chem Theory Comput

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.

Molecular docking is a crucial technique for elucidating protein-ligand interactions. Machine learning-based docking methods offer promising advantages over traditional approaches, with significant potential for further development. However, many current machine learning-based methods face challenges in ensuring the physical plausibility of generated docking poses.

View Article and Find Full Text PDF

Enhancing Activation Energy Predictions under Data Constraints Using Graph Neural Networks.

J Chem Inf Model

January 2025

Department of Chemical Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.

Accurately predicting activation energies is crucial for understanding chemical reactions and modeling complex reaction systems. However, the high computational cost of quantum chemistry methods often limits the feasibility of large-scale studies, leading to a scarcity of high-quality activation energy data. In this work, we explore and compare three innovative approaches (transfer learning, delta learning, and feature engineering) to enhance the accuracy of activation energy predictions using graph neural networks, specifically focusing on methods that incorporate low-cost, low-level computational data.

View Article and Find Full Text PDF

Virtual screening: hope, hype, and the fine line in between.

Expert Opin Drug Discov

January 2025

Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY, USA.

Introduction: Technological advancements in virtual screening (VS) have rapidly accelerated its application in drug discovery, as reflected by the exponential growth in VS-related publications. However, a significant gap remains between the volume of computational predictions and their experimental validation. This discrepancy has led to a rise in the number of unverified 'claimed' hits which impedes the drug discovery efforts.

View Article and Find Full Text PDF

Introduction: Diagnostic evaluations for attention-deficit/hyperactivity disorder (ADHD) are becoming increasingly complicated by the number of adults who fabricate or exaggerate symptoms. Novel methods are needed to improve the assessment process required to detect these noncredible symptoms. The present study investigated whether unsupervised machine learning (ML) could serve as one such method, and detect noncredible symptom reporting in adults undergoing ADHD evaluations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!