A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An acidic exopolysaccharide α-D-galacturono-β-D-glucan produced by the cyanobacterium Scytonema sp. | LitMetric

An acidic exopolysaccharide α-D-galacturono-β-D-glucan produced by the cyanobacterium Scytonema sp.

Carbohydr Res

Institute of Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 5807/9, SK-84538 Bratislava, Slovakia. Electronic address:

Published: April 2024

Some cyanobacteria produce a wide range of secondary metabolites, some of which are of industrial interest. Exopolysaccharides, particularly interesting among them, represent relatively complex primary structures with interesting bioactivity, biodegradability and specific applications. Cultivation of the freshwater cyanobacterium Scytonema sp. provided a proteoglycan-type exopolysaccharide with a relatively low yield and a wide spectrum of molecular weights (M) ranging from 2.2 to 1313 × 10 g/mol. Chemical analyses detected the presence of carbohydrates (46 wt%), proteins (10 wt%) and uronic acids (8 wt%). Monosaccharide analysis revealed up to seven neutral sugars with a dominance of glucose (23.6 wt%), galactose (7.4 wt%) and fucose (5.0 wt%) residues, while the others had a much lower content (0.9-3.4 wt%). The presence of galacturonic acid (8.0 wt%) indicated the appearance of ionic type of exopolysaccharide. A preliminary structural study indicated that the α-D-galacturono-β-D-glucan forms a dominant part of Scytonema sp. exopolymer. Its backbone is composed of two 1,6-linked and one 1,2-linked β-D-Glcp residues, which is branched at O6 by side chains composed of α-D-GalAp(1 → 2)-β-D-Glcp(1→ dimer or monomeric β-D-Glcp(1→ residue.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carres.2024.109088DOI Listing

Publication Analysis

Top Keywords

cyanobacterium scytonema
8
acidic exopolysaccharide
4
exopolysaccharide α-d-galacturono-β-d-glucan
4
α-d-galacturono-β-d-glucan produced
4
produced cyanobacterium
4
scytonema cyanobacteria
4
cyanobacteria produce
4
produce wide
4
wide range
4
range secondary
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!