Porcine reproductive and respiratory virus (PRRSV), one of the most significant viruses in the swine industry, has been challenging to control due to its high mutation and recombination rates and complexity. This retrospective study aimed to describe and compare the distribution of PRRSV lineages obtained at the individual farm, production system, and regional levels. PRRSV-2 (type 2) sequences (n = 482) identified between 2017 - 2021 were provided by a regional state laboratory (Ohio Department of Agriculture, Animal Disease Diagnostic Center (ODA-ADDL)) collected from swine farms in Ohio and neighboring states, including Indiana, Michigan, Pennsylvania, and West Virginia. Additional sequences (n = 138) were provided by one collaborating swine production system. The MUSCLE algorithm on Geneious Prime® was used to align the ORF5 region of PRRSV-2 sequences along with PRRSV live attenuated vaccine strains (n = 6) and lineage anchors (n = 169). Sequenced PRRSV-2 were assigned to the most identical lineage anchors/vaccine strains. Among all sequences (n = 620), 29.8% (185/620) were ≥ 98.0% identity with the vaccine strains, where 93.5% (173/185) and 6.5% (12/185) were identical with the L5 Ingelvac PRRS® MLV and L8 Fostera® PRRS vaccine strains, respectively, and excluded from the analysis. At the regional level across five years, the top five most identified lineages included L1A, L5, L1H, L1C, and L8. Among non-vaccine sequences with production system known, L1A sequences were mostly identified (64.3% - 100.0%) in five systems, followed by L1H (0.0% - 28.6%), L1C (0.0% - 10.5%), L5 (0.0% - 14.4%), L8 (0.0% - 1.3%), and L1F (0.0% - 0.5%). Furthermore, among non-vaccine sequences with the premise identification available (n = 262), the majority of sequences from five individual farms were either classified into L1A or L5. L1A and L5 sequences coexisted in three farms, while samples submitted by one farm contained L1A, L1H, and L5 sequences. Additionally, the lineage classification results of non-vaccine sequences were associated with their restriction fragment length polymorphism (RFLP) patterns (Fisher's exact test, p < 0.05). Overall, our results show that individual farm and production system-level PRRSV-2 lineage patterns do not necessarily correspond to regional-level patterns, highlighting the influence of individual farms and systems in shaping PRRSV occurrence within those levels, and highlighting the crucial goal of within-farm and system monitoring and early detection for accurate knowledge on PRRSV-2 lineage occurrence and emergence.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.prevetmed.2024.106186DOI Listing

Publication Analysis

Top Keywords

production system
16
individual farm
12
farm production
12
vaccine strains
12
non-vaccine sequences
12
sequences
11
lineage patterns
8
system regional
8
regional levels
8
ohio neighboring
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!