Wogonin improves colitis by activating the AhR pathway to regulate the plasticity of ILC3/ILC1.

Phytomedicine

Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China; Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, PR China. Electronic address:

Published: June 2024

Background: Intestinal barrier dysfunction caused by the disrupted balance of group 3 innate lymphoid cells (ILC3)/group 1 innate lymphoid cells (ILC1) is a significant feature in the pathogenesis of inflammatory bowel disease (IBD). Activation of aryl hydrocarbon receptor (AhR) signaling contributes to the maintenance of ILC3/ILC1 balance. Wogonin, a natural flavonoid from Scutellaria baicalensis Georgi, can repair intestinal mucosal damage of IBD. However, it remains unclear if wogonin can exert a therapeutic effect by activating the AhR pathway to regulate the plasticity of ILC3/ILC1.

Purpose: In this study, we investigated the immunomodulatory effects of wogonin on IBD and its potential mechanisms in vitro and in vivo.

Study Design And Methods: Chronic colitis was induced by four cycles of 2 % DSS treatment in mice. 20 mg kg/day wogonin was administrated by oral gavage and mice were treated intraperitoneally with 10 mg kg/2 days CH223191 to block the AhR pathway. Colon tissues were processed for histopathological examination and evaluation of the epithelial barrier function by immunohistochemistry. The activation of the AhR pathway and the plasticity of ILC3/ILC1 were determined by western blot and flow cytometry. Then, we also detected the intestinal microflora and their metabolites by 16 s sequencing and non-targeted Metabolomics analysis. Furthermore, an in vitro culture system consisting of MNK3 cells and NCM460 cells, and a CETSA assay were performed to confirm the molecular mechanism.

Results: Wogonin ameliorated histological severity of the colon, decreased the secretion of inflammatory factors, and increased tight junction proteins in colitis mice. These effects are associated with the tendency of conversion from ILC3 to ILC1 prevented by wogonin, which was offset by AhR antagonist CH223191. In addition, wogonin exerted the curative effect by altering gut microbiota to produce metabolites such as Kynurenic acid, and 1H-Indole-3-carboxaldehyde as AhR endogenous ligands. In vitro data further verified that wogonin as an exogenous ligand directly binds to the structural domain of AhR by CETSA. Also, the supernatant of MNK-3 cells stimulated with wogonin enhanced expression of Occludin and Claudin1 in NCM460 cells induced by LPS.

Conclusion: Cumulatively, our study illustrated that wogonin improved the outcomes of DSS-induced chronic colitis via regulating the plasticity of ILC3/ILC1. Its specific mechanism is to binding to AhR directly, and to activate the AhR pathway indirectly by altering the tryptophan metabolisms of gut microbiota.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2024.155425DOI Listing

Publication Analysis

Top Keywords

ahr pathway
20
plasticity ilc3/ilc1
12
wogonin
11
ahr
10
activating ahr
8
pathway regulate
8
regulate plasticity
8
innate lymphoid
8
lymphoid cells
8
chronic colitis
8

Similar Publications

Endometriosis, though not classified as a carcinogenic condition, shares features such as oxidative stress, migration, invasion, angiogenesis, and inflammation with tumor cells. This study aims to review the effects of flavonoids on these processes and their molecular mechanisms in preventing and treating endometriosis. A comprehensive review was conducted, involving a literature search in online databases using keywords like "endometriosis," "endometrioma," and "flavonoid.

View Article and Find Full Text PDF

Indoleamine 2, 3-dioxygenase 1 inhibition mediates the therapeutic effects in Parkinson's disease mice by modulating inflammation and neurogenesis in a gut microbiota dependent manner.

Exp Neurol

January 2025

Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi, School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:

Abnormal tryptophan metabolism is closely linked with neurological disorders. Research has shown that indoleamine 2,3-dioxygenase 1 (IDO-1), the first rate-limiting enzyme in tryptophan degradation, is upregulated in Parkinson's disease (PD). However, the precise role of IDO-1 in PD pathogenesis remains elusive.

View Article and Find Full Text PDF

The Kynurenine pathway is crucial in metabolizing dietary tryptophan into bioactive compounds known as kynurenines, which have been linked to glucose homeostasis. The aryl hydrocarbon receptor (AhR) has recently emerged as the endogenous receptor for the kynurenine metabolite, kynurenic acid (KYNA). However, the specific role of AhR in pancreatic β-cells remains largely unexplored.

View Article and Find Full Text PDF

The pathway alteration load is a pan-cancer determinant of outcome of targeted therapies: results from the Drug Rediscovery Protocol (DRUP).

ESMO Open

January 2025

Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands; Oncode Institute, Utrecht, The Netherlands. Electronic address:

Background: Many patients with cancer exhibit primary or rapid secondary resistance to targeted therapy (TT). We hypothesized that a higher number of altered oncogenic signaling pathways [pathway alteration load (PAL)] would reduce the benefit of TT which only intervenes in one pathway. This hypothesis was tested in the Drug Rediscovery Protocol (DRUP).

View Article and Find Full Text PDF

Atopic dermatitis (AD) is a chronic inflammatory skin condition characterized by immune dysregulation, skin barrier dysfunction, and a significant patient burden. Recent studies have highlighted the aryl hydrocarbon receptor (AhR) as a promising therapeutic target for AD management because of its pivotal role in modulating immune responses and maintaining skin barrier integrity. The dysfunction of the AhR pathway has been linked to AD pathogenesis, emphasizing the need for therapies that can restore its regulatory functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!