Arrest of bleeding usually applies clotting agents to trigger coagulation procedures or adhesives to interrupt blood flow through sealing the vessel; however, the efficiency is compromised. Here, we propose a concept of integration of hemostasis and adhesion via yam mucus's microgels. The mucus microgels exhibit attractive attributes of hydrogel with uniform size and shape. Their shear-thinning, self-healing and strong adhesion make them feasible as injectable bioadhesion. Exceptionally, the blood can trigger the microgels' gelation with the outcome of super extensibility, which leads to the microgels a strong hemostatic agent. We also found a tight gel adhesive layer formed upon microgels' contacting the blood on the tissue, where there is the coagulation factor XIII triggered to form a dense three-dimensional fibrin meshwork. The generated structures show that the microgels look like hard balls in the dispersed phase into the blood-produced fibrin mesh of a soft net phase. Both phases work together for a super-extension gel. We demonstrated the microgels' fast adhesion and hemostasis in the livers and hearts of rabbits and mini pigs. The microgels also promoted wound healing with good biocompatibility and biodegradability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2024.122535 | DOI Listing |
Nature
January 2025
Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
The γ-carboxylation of glutamate residues enables Ca-mediated membrane assembly of protein complexes that support broad physiological functions including hemostasis, calcium homeostasis, immune response, and endocrine regulation. Modulating γ-carboxylation level provides prevalent treatments for hemorrhagic and thromboembolic diseases. This unique posttranslational modification requires vitamin K hydroquinone (KH) to drive highly demanding reactions catalyzed by the membrane-integrated γ-carboxylase (VKGC).
View Article and Find Full Text PDFJ Venom Anim Toxins Incl Trop Dis
January 2025
Department of Biochemistry, School of Medicine, University of Costa Rica, San José, Costa Rica.
Background: Fish venoms have been poorly characterized and the available information about their composition suggests they are uncomplicated secretions that, combined with epidermal mucus, could induce an inflammatory reaction, excruciating pain, and, in some cases, local tissue injuries.
Methods: In this study, we characterized the 24-hour histopathological effects of lionfish venom in a mouse experimental model by testing the main fractions obtained by size exclusion-HPLC. By partial proteomics analysis, we also correlated these effects with the presence of some potentially toxic venom components.
Biopolymers
March 2025
Department of Chemistry, School of Chemical and Physical Sciences, Lovely Professional University, Phagwara, India.
In this paper, we offer a unique green synthetic approach for producing iron sulfide quantum dots (FeS QD)-chitosan composites using gel chemistry. The technique uses the environmental features of chitosan, a biocompatible and biodegradable polysaccharide, and the excellent electrical properties of FeS QDs. By sustainable chemistry principles, the synthesis process is carried out under gentle settings, using aqueous solutions and avoiding hazardous solvents and strong chemicals.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China. Electronic address:
The treatment of diabetic wounds with bacterial infection is a major challenge in the medical field. Microenvironment-responsive hydrogel dressings have shown great advantages, and photothermal antibacterial therapy is a potential antimicrobial strategy to avoid the generation of resistant bacteria. In this work, a glucose-triggered near-infrared (NIR)-responsive photothermal antibacterial hydrogel was designed and named GOGD based on a cascade reaction of glucose oxidation and polyphenol polymerization.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Biomedical Institute for Multimorbidity (BIM), Hull York Medical School (HYMS), University of Hull, HU6 7RX Hull, UK.
Cardiovascular complications claim the lives of up to 70% of patients with diabetes mellitus (DM). The mechanisms increasing cardiovascular risk in DM remain to be fully understood and successfully addressed. Nonetheless, there is increasing evidence in the scientific literature of the participation of platelets in the cardiovascular complications of DM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!