Background: Sodium-glucose cotransporter 2 (SGLT- 2) inhibitors exert cardiovascular and kidney-protective effects in people with diabetes. Attenuation of inflammation could be important for systemic protection. The lectin pathway of complement system activation is linked to diabetic nephropathy. We hypothesized that SGLT-2 inhibitors lower the circulating level of pattern-recognition molecules of the lectin cascade and attenuate systemic complement activation.
Methods: Analysis of paired plasma samples from the DapKid crossover intervention study where patients with type 2 diabetes mellitus (T2DM) and albuminuria were treated with dapagliflozin and placebo for 12 weeks (10 mg/day, n=36). ELISA was used to determine concentrations of collectin kidney 1 (CL-K1), collectin liver 1 (CL-L1), mannose-binding lectin (MBL), MBL-associated serine protease 2 (MASP-2), the anaphylatoxin complement factor 3a (C3a), the stable C3 split product C3dg and the membrane attack complex (sC5b-9).
Results: As published before, dapagliflozin treatment lowered Hba from 74 (14.9) mmol/mol to 66 (13.9) mmol/mol (p<0.0001), and the urine albumin/creatinine ratio from 167.8 mg/g to 122.5 mg/g (p<0.0001). Plasma concentrations of CL-K1, CL-L1, MBL, and MASP-2 did not change significantly after dapagliflozin treatment (P>0.05) compared to placebo treatment. The plasma levels of C3a (P<0.05) and C3dg (P<0.01) increased slightly but significantly, 0.6 [0.2] units/mL and 76 [52] units/mL respectively, after dapagliflozin treatment. The C9-associated neoepitope in C5b-9 did not change in plasma concentration by dapagliflozin (P>0.05).
Conclusion: In patients with type 2 diabetes and albuminuria, SGLT-2 inhibition resulted in modest C3 activation in plasma, likely not driven by primary changes in circulating collectins and not resulting in changes in membrane attack complex. Based on systemic analyses, organ-specific local protective effects of gliflozins against complement activation cannot be excluded.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.imbio.2024.152797 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!