Second generation AlF-labeled D-amino acid peptide for CXCR4 targeted molecular imaging.

Nucl Med Biol

Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium. Electronic address:

Published: May 2024

Background: The C-X-C chemokine receptor type 4 (CXCR4) is overexpressed in many cancers, e.g. multiple myeloma and acute leukemia, yet solely [Ga]PentixaFor is used for clinical PET imaging. The aim of this study was to develop and assess a second generation AlF-labeled D-amino acid peptide based on the viral macrophage inflammatory protein II for CXCR4 targeted molecular imaging.

Methods: We designed a library of monomer and multimer constructs and evaluated their binding affinity for human and mouse CXCR4. Based on these results, we selected the best vector molecule for development of an AlF-labeled ligand, [F]AlF-NOTA-2xDV1(c11sc12s), which was further evaluated in a cell-based binding assay to assess its binding properties and specificity for CXCR4. Next, pharmacokinetics and tumor uptake of [F]AlF-NOTA-2xDV1(c11sc12s) were evaluated in naïve mice and mice with xenografts derived from U87.CXCR4 cells. Finally, we performed an imaging study in a non-human primate to assess the in vivo distribution of this novel radioligand in a species closely related to humans.

Results: The lead ligand AlF-NOTA-2xDV1(c11sc12s) showed six-fold higher affinity for human CXCR4 compared to Ga-Pentixafor. The corresponding radiotracer was obtained in a good radiochemical yield of 40.1 ± 13.5 % (n = 4) and apparent molar activity of 20.4 ± 3.3 MBq/nmol (n = 4) after optimization. In U87.CD4.CXCR4 cell binding assays, the total bound fraction of [F]AlF-NOTA-(2×)DV1(c11sc12s) was 32.4 ± 1.8 %. This fraction could be reduced by 82.5 % in the presence of 75 μM AMD3100. In naïve mice, [F]AlF-NOTA-2xDV1(c11sc12s) accumulated in organs expressing mouse CXCR4, e.g. the liver (SUV (mean standardized uptake value) 75 min p.i. 11.7 ± 0.6), which was blockable by co-injecting AMD3100 (5 mg/kg). In U87.CXCR4 xenografted tumor mice, the tumor uptake of [F]AlF-NOTA-2xDV1(c11sc12s) remained low (SUV 0.5 ± 0.1), but was reduced by co-administration of AMD3100. Surprisingly, [F]AlF-NOTA-2xDV1(c11sc12s) exhibited a similar biodistribution in a non-human primate as in mice indicating off-target binding of [F]AlF-NOTA-2xDV1(c11sc12s) in liver tissue. We confirmed that [F]AlF-NOTA-2xDV1(c11sc12s) is taken up by hepatocytes using in vitro studies and that the uptake can be blocked with AMD3100 and rifampicin, a potent organic anion-transporting-polypeptide (OATP)1B1 and OATP1B3 inhibitor.

Conclusion: The second generation D-peptide AlF-NOTA-2xDV1(c11sc12s) showed high affinity for human CXCR4 and the corresponding radiotracer was produced in good radiochemical yields. However, [F]AlF-NOTA-2xDV1(c11sc12s) is not specific for CXCR4 and is also a substrate for OATP1B1 and/or OATP1B3, known to mediate hepatic uptake. Therefore, D-amino acid peptides, based on the viral macrophage inflammatory protein II, are not the prefered vector molecule for the development of CXCR4 targeting molecular imaging tools.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nucmedbio.2024.108906DOI Listing

Publication Analysis

Top Keywords

second generation
12
d-amino acid
12
affinity human
12
cxcr4
10
generation alf-labeled
8
alf-labeled d-amino
8
acid peptide
8
cxcr4 targeted
8
targeted molecular
8
molecular imaging
8

Similar Publications

The human microbiota may influence the effectiveness of drug therapy by activating or inactivating the pharmacological properties of drugs. Computational methods have demonstrated their ability to screen reliable microbe-drug associations and uncover the mechanism by which drugs exert their functions. However, the previous prediction methods failed to completely exploit the neighborhood topologies of the microbe and drug entities and the diverse correlations between the microbe-drug entity pair and the other entities.

View Article and Find Full Text PDF

Purpose: This study aimed to identify a novel recombinant adeno-associated virus (rAAV) capsid variant that can widely transfect the deep retina through intravitreal injection and to assess their effectiveness and safety in gene delivery.

Methods: By adopting the sequences of various cell-penetrating peptides and inserting them into the capsid modification region of AAV2, we generated several novel variants. The green fluorescent protein (GFP)-carrying variants were screened following intravitreal injection.

View Article and Find Full Text PDF

Background: Glucose transporter 1 deficiency syndrome (Glut1DS) was initially reported by De Vivo and colleagues in 1991. This disease arises from mutations in the SLC2A1 and presents with a broad clinical spectrum. It is a treatable neuro-metabolic condition, where prompt diagnosis and initiation of ketogenic dietary therapy can markedly enhance the prognosis.

View Article and Find Full Text PDF

How to Study Gene Expression and Gain of Function of Hoxb1 in Mouse Heart Development.

Methods Mol Biol

January 2025

Aix Marseille Univ, INSERM, MMG (Marseille Medical Genetics), Marseille, France.

Anterior Hox genes are required for genetic identity and anterior posterior patterning of the second heart field (SHF), which contributes to the formation of the embryonic heart in vertebrates. Defective contribution of SHF cells to the arterial or venous pole of the heart is often associated with severe congenital heart defects. The mouse Cre-lox system allows the activation of expression of any gene of interest in restricted tissues.

View Article and Find Full Text PDF

This study aimed to test age-related changes in sternal fusion and sternal-rib cartilage ossification on multi-slice computed tomography (MSCT) images of the Croatian population. The additional aim was to develop models to estimate age and provide an interface for the model's application and validation. This retrospective study was conducted on 144 MSCT images of the sternal region, and the developed models were tested on 36 MSCT images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!