The Rashba parameter α_{R} is usually assumed to scale linearly with the amplitude of polar displacements by construction of the spin-orbit interaction. On the basis of first-principles simulations, ferroelectric phases of SrTiO_{3} reached under epitaxial compressive strain are characterized by (i) large Rashba effects at the bottom of the conduction band near the paraelectric-ferroelectric boundary and (ii) an unexpected suppression of the phenomena when the amplitude of polar displacements increases. This peculiar behavior is ascribed to the inverse dependence of the Rashba parameter with the crystal field Δ_{CF} induced by the polar displacements that alleviates the degeneracy of Ti t_{2g} states and annihilates the Rashba effects. Although α_{R} has intrinsically a linear dependance on polar displacements, the latter becomes antagonist to Rashba phenomena at large polar mode amplitude. Thus, the Rashba coefficient may be bound to an upper value.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.132.106401 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!