AI Article Synopsis

  • Two demethylases that target H3K4me3 interact with a protein complex called Polycomb repressive complex 2.
  • This interaction changes the methylation patterns at an important locus involved in flowering.
  • As a result, it helps to promote the flowering process in rice.

Article Abstract

Two H3K4me3 demethylases physically interact with the Polycomb repressive complex 2, thereby altering methylation of a key flowering locus and promoting rice flowering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11213247PMC
http://dx.doi.org/10.1093/plphys/kiae172DOI Listing

Publication Analysis

Top Keywords

h3k4me3 demethylases
8
polycomb repressive
8
repressive complex
8
physical coupling
4
coupling h3k4me3
4
demethylases polycomb
4
complex accelerate
4
accelerate flowering
4
flowering rice
4
rice h3k4me3
4

Similar Publications

Cohesin positions the epigenetic reader Phf2 within the genome.

EMBO J

January 2025

Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria.

Article Synopsis
  • Genomic DNA is organized into chromatin with the help of histones and cohesin, but their cooperation in genome regulation is not well understood.
  • Researchers identified Phf2, a histone demethylase, as a protein that interacts with cohesin, indicating a potential role in regulating transcription at active gene sites.
  • The studies show that Phf2 helps recruit cohesin to transcription start sites and affects the size of chromatin compartments, highlighting an important relationship between histone modification and genome architecture in eukaryotic cells.
View Article and Find Full Text PDF

KDM5 family proteins are best known for their demethylation of the promoter proximal chromatin mark H3K4me3. KDM5-regulated transcription is critical in the brain, with variants in the X-linked paralog causing the intellectual disability (ID) disorder Claes-Jensen syndrome. Although the demethylase activity of KDM5C is known to be important for neuronal function, the contribution of non-enzymatic activities remain less characterized.

View Article and Find Full Text PDF

Epigenetic modifications play an important role in disturbed flow (d-flow) induced atherosclerotic plaque formation. By analysing a scRNA-seq dataset of the left carotid artery (LCA) under d-flow conditions, we found that Jarid1b (KDM5B) was upregulated primarily in a subcluster of endothelial cells in response to d-flow stimulation. We therefore investigated the mechanism of KDM5B expression and the role of KDM5B in endothelial cell.

View Article and Find Full Text PDF

ZBTB7A is a modulator of KDM5-driven transcriptional networks in basal breast cancer.

Cell Rep

December 2024

Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; The Ludwig Center at Harvard, Boston, MA 02115, USA. Electronic address:

Article Synopsis
  • The study identifies KDM5A as an important oncogene in basal breast cancer, showing that its amplification and overexpression can be targeted to suppress cancer cell growth.
  • CRISPR knockout screens reveal that deleting the ZBTB7A transcription factor makes cells more sensitive to KDM5 inhibition, while the deletion of RHO-GTPases provides resistance.
  • The research highlights the role of ZBTB7A and KDM5A/B in regulating gene expression, particularly regarding NF-κB targets, and links high ZBTB7A levels to poorer treatment responses in triple-negative breast cancer.
View Article and Find Full Text PDF

Lysine-specific demethylase 1 (LSD1/KDM1A) is a pivotal epigenetic enzyme that contributes to several malignancies including malignant glioma. LSD1 is a flavin adenine dinucleotide dependent histone demethylase that specifically targets histone H3 lysine (K) 4 mono- (me1) and di-methylation (me2) and H3K9me1/2 for demethylation. Herein we report the development of an LSD inhibitor, S2172, which efficiently penetrates the blood-brain barrier.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!