Aligned carbon nanotube-based electronics on glass wafer.

Sci Adv

Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing, China.

Published: March 2024

Carbon nanotubes (CNTs), due to excellent electronic properties, are emerging as a promising semiconductor for diverse electronic applications with superiority over silicon. However, until now, the supposed superiority of CNTs by "head-to-head" comparison within a well-defined voltage range remains unrealized. Here, we report aligned CNT (ACNT)-based electronics on a glass wafer and successfully develop a 250-nm gate length ACNT-based field-effect transistor (FET) with an almost identical transfer curve to a "90-nm" node silicon device, indicating a three- to four-generation superiority. Moreover, a record gate delay of 9.86 ps is achieved by our ring oscillator, which exceeds silicon even at a lower supply voltage. Furthermore, the fabrication of basic logic gates indicates the potential for further digital integrated circuits. All of these results highlight ACNT-based FETs on the glass wafer as an effective solution/platform for further development of CNT-based electronics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10959407PMC
http://dx.doi.org/10.1126/sciadv.adl1636DOI Listing

Publication Analysis

Top Keywords

glass wafer
12
electronics glass
8
aligned carbon
4
carbon nanotube-based
4
nanotube-based electronics
4
wafer carbon
4
carbon nanotubes
4
nanotubes cnts
4
cnts excellent
4
excellent electronic
4

Similar Publications

Measurement and Analysis of Interconnects' Resonance and Signal/Power Integrity Degradation in Glass Packages.

Micromachines (Basel)

January 2025

Department of Semiconductor System Engineering, Sejong University, Seoul 05006, Republic of Korea.

In this article, resonance phenomena of high-speed interconnects and power delivery networks in glass packages are measured and analyzed. The resonances are generated in the interconnection by the physical dimension, cancelation of reactance components, and modes. When the resonances are generated in the operation frequency band, the signal/power integrity of the interconnect can be affected.

View Article and Find Full Text PDF

The Effect of Metal Shielding Layer on Electrostatic Attraction Issue in Glass-Silicon Anodic Bonding.

Micromachines (Basel)

December 2024

Zhejiang Xinsheng Semiconductor Technology, Zhuji 311899, China.

Silicon-glass anode bonding is the key technology in the process of wafer-level packaging for MEMS sensors. During the anodic bonding process, the device may experience adhesion failure due to the influence of electric field forces. A common solution is to add a metal shielding layer between the glass substrate and the device.

View Article and Find Full Text PDF

This paper presents a novel approach to fabricate substrate integrated waveguides (SIWs) on glass substrates with tin (Sn) through glass vias (TGVs) tailored for millimeter-wave applications. The fabrication process employs a custom-designed vacuum suctioning system to rapidly fill precise TGV holes in the glass substrate, which are formed by wafer-level glass reflow micromachining techniques with molten tin in a minute. This method offers a very fast and cost-effective alternative for complete via filling without voids compared to the conventional metallization techniques such as electroplating or sputtering.

View Article and Find Full Text PDF

Light manipulation and control are essential in various contemporary technologies, and as these technologies evolve, the demand for miniaturized optical components increases. Planar-lens technologies, such as metasurfaces and diffractive optical elements, have gained attention in recent years for their potential to dramatically reduce the thickness of traditional refractive optical systems. However, their fabrication, particularly for visible wavelengths, involves complex and costly processes, such as high-resolution lithography and dry-etching, which has limited their availability.

View Article and Find Full Text PDF

Development of multiple genome-wide proteome microarrays comprised wafer substrate-based chip and its scanner: An advanced high-throughput and sensitivity for molecular interactions studies.

Biosens Bioelectron

March 2025

Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan. Electronic address:

Proteome microarray technology enables high-throughput analysis of protein interactions with all kinds of molecules. Wafer (6-inch) substrates offer a promising alternative to conventional glass (2.6 × 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!