Bainong sterility (BNS) is a thermo-sensitive genic male sterile wheat line, characterised by anther fertility transformation in response to low temperature (LT) stress during meiosis, the failure of vacuole decomposition and the absence of starch accumulation in sterile bicellular pollen. Our study demonstrates that the late microspore (LM) stage marks the transition from the anther growth to anther maturation phase, characterised by the changes in anther structure, carbohydrate metabolism and the main transport pathway of sucrose (Suc). Fructan is a main storage polysaccharide in wheat anther, and its synthesis and remobilisation are crucial for anther development. Moreover, the process of pollen amylogenesis and the fate of the large vacuole in pollen are closely intertwined with fructan synthesis and remobilisation. LT disrupts the normal physiological metabolism of BNS anthers during meiosis, particularly affecting carbohydrate metabolism, thus determining the fate of male gametophytes and pollen abortion. Disruption of fructan synthesis and remobilisation regulation serves as a decisive event that results in anther abortion. Sterile pollen exhibits common traits of pollen starvation and impaired starch accumulation due to the inhibition of apoplastic transport starting from the LM stage, which is regulated by cell wall invertase TaIVR1 and Suc transporter TaSUT1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pce.14888 | DOI Listing |
Cell Commun Signal
January 2025
Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates.
This study investigated the effects of non-thermal atmospheric plasma (NTAP) treatment on the growth, chemical composition, and biological activity of geranium (Pelargonium graveolens L'Herit) leaves. NTAP was applied at a frequency of 13.56 MHz, exposure time of 15 s, discharge temperature of 25 °C, and power levels (T1 = 50, T2 = 80, and T3 = 120 W).
View Article and Find Full Text PDFBMC Surg
January 2025
Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
Background: Metabolic and bariatric surgery (MBS) is a suitable solution for the treatment of morbid obesity. Investigating an MBS method that has the best outcomes has always been the main concern of physicians. The current study aimed to compare nutritional, anthropometric, and psychological complications of individuals undergoing various MBS Techniques.
View Article and Find Full Text PDFMetabolomics
January 2025
Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Background: Gestational exposure to non-persistent endocrine-disrupting chemicals (EDCs) may be associated with adverse pregnancy outcomes. While many EDCs affect the endocrine system, their effects on endocrine-related metabolic pathways remain unclear. This study aims to explore the global metabolome changes associated with EDC biomarkers at delivery.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Life Technologies, Division of Biotechnology, University of Turku, Medisiina D, 5th floor, Kiinamyllynkatu 10, 20520, Turku, Finland.
Glycosylation changes of circulating proteins carrying the CA19-9 antigen may offer new targets for detection methods to be explored for the diagnosis of epithelial ovarian cancer (EOC). Search for assay designs for targets initially captured by a CA19-9 antigen reactive antibody from human body fluids by probing with fluorescent nanoparticles coated with lectins or antibodies to known EOC associated proteins. CA19-9 antigens were immobilized from ascites fluids, ovarian cyst fluids or serum samples using monoclonal antibody C192 followed by probing of carrier proteins using anti-MUC16, anti-MUC1 and, anti STn antibodies and seven lectins, all separately coated on nanoparticles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!