Existing neural heuristics for multiobjective vehicle routing problems (MOVRPs) are primarily conditioned on instance context, which failed to appropriately exploit preference and problem size, thus holding back the performance. To thoroughly unleash the potential, we propose a novel conditional neural heuristic (CNH) that fully leverages the instance context, preference, and size with an encoder-decoder structured policy network. Particularly, in our CNH, we design a dual-attention-based encoder to relate preferences and instance contexts, so as to better capture their joint effect on approximating the exact Pareto front (PF). We also design a size-aware decoder based on the sinusoidal encoding to explicitly incorporate the problem size into the embedding, so that a single trained model could better solve instances of various scales. Besides, we customize the REINFORCE algorithm to train the neural heuristic by leveraging stochastic preferences (SPs), which further enhances the training performance. Extensive experimental results on random and benchmark instances reveal that our CNH could achieve favorable approximation to the whole PF with higher hypervolume (HV) and lower optimality gap (Gap) than those of the existing neural and conventional heuristics. More importantly, a single trained model of our CNH can outperform other neural heuristics that are exclusively trained on each size. In addition, the effectiveness of the key designs is also verified through ablation studies.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2024.3371706DOI Listing

Publication Analysis

Top Keywords

neural heuristic
12
conditional neural
8
multiobjective vehicle
8
vehicle routing
8
routing problems
8
existing neural
8
neural heuristics
8
instance context
8
problem size
8
single trained
8

Similar Publications

Neurodynamic observations indicate that the cerebral cortex evolved by self-organizing into functional networks, These networks, or distributed clusters of regions, display various degrees of attention maps based on input. Traditionally, the study of network self-organization relies predominantly on static data, overlooking temporal information in dynamic neuromorphic data. This paper proposes Temporal Self-Organizing (TSO) method for neuromorphic data processing using a spiking neural network.

View Article and Find Full Text PDF

The attention mechanism is essential to (CNN) vision backbones used for sensing and imaging systems. Conventional attention modules are designed heuristically, relying heavily on empirical tuning. To tackle the challenge of designing attention mechanisms, this paper proposes a novel probabilistic attention mechanism.

View Article and Find Full Text PDF

Recurrent activity propagates through labile ensembles in macaque dorsolateral prefrontal microcircuits.

Curr Biol

December 2024

Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA; Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Electronic address:

Human and non-human primate studies clearly implicate the dorsolateral prefrontal cortex (dlPFC) as critical for advanced cognitive functions. It is thought that intracortical synaptic architectures within the dlPFC are the integral neurobiological substrate that gives rise to these processes. In the prevailing model, each cortical column makes up one fundamental processing unit composed of dense intrinsic connectivity, conceptualized as the "canonical" cortical microcircuit.

View Article and Find Full Text PDF

The two-dimensional (2D) irregular packing problem is a combinatorial optimization problem with NP-complete characteristics, which is common in the production process of clothing, ships, and plate metals. The classic packing solution is a hybrid algorithm based on heuristic positioning and meta-heuristic sequencing, which has the problems of complex solving rules and high time cost. In this study, the similarity measurement method based on the twin neural network model is used to evaluate the similarity of pieces in the source task and the target task.

View Article and Find Full Text PDF

The explainability of Graph Neural Networks (GNNs) is critical to various GNN applications, yet it remains a significant challenge. A convincing explanation should be both necessary and sufficient simultaneously. However, existing GNN explaining approaches focus on only one of the two aspects, necessity or sufficiency, or a heuristic trade-off between the two.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!