New duck papillomavirus type identified in a mallard in Missouri, USA.

Arch Virol

Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA.

Published: March 2024

Papillomaviruses are small circular DNA viruses that infect epithelial and mucosal cells and have co-evolved with their hosts. Some papillomaviruses in mammals are well studied (especially those associated with disease). However, there is limited information on papillomaviruses associated with avian hosts. From a cloacal swab sample of a mallard (Anas platyrhynchos) sampled in Missouri, USA (6 Jan 2023), we identified a papillomavirus (7839 nt) that shares ~68% genome-wide nucleotide sequence identity with Anas platyrhynchos papillomavirus 1 (AplaPV1) from a mallard sampled in Newfoundland (Canada) and ~40% with AplaPV2 from a mallard sampled in Minnesota (USA) with mesenchymal dermal tumors. The papillomavirus we identified shares 73.6% nucleotide sequence identity in the L1 gene with that of AplaPV1 and thus represents a new AplaPV type (AplaPV3). The genome sequence of AplaPV3 shares >97% identity with three partial PV genome sequences (1316, 1997, and 4241 nt) identified in a mallard in India, indicating that that virus was also AplaPV3.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00705-024-06006-6DOI Listing

Publication Analysis

Top Keywords

identified mallard
8
missouri usa
8
anas platyrhynchos
8
nucleotide sequence
8
sequence identity
8
mallard sampled
8
mallard
5
duck papillomavirus
4
papillomavirus type
4
identified
4

Similar Publications

Near telomere-to-telomere genome assemblies of Silkie Gallus gallus and Mallard Anas platyrhynchos restored the structure of chromosomes and "missing" genes in birds.

J Anim Sci Biotechnol

January 2025

Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.

Background: Chickens and ducks are vital sources of animal protein for humans. Recent pangenome studies suggest that a single genome is insufficient to represent the genetic information of a species, highlighting the need for more comprehensive genomes. The bird genome has more than tens of microchromosomes, but comparative genomics, annotations, and the discovery of variations are hindered by inadequate telomere-to-telomere level assemblies.

View Article and Find Full Text PDF

Avian circoviruses and hepadnaviruses identified in tissue samples of various waterfowl.

Virology

December 2024

School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA; The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, 85287, USA; Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA; Structural Biology Research Unit, Department of Integrative, Biomedical Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa. Electronic address:

North America is home to over 40 species of migratory waterfowl. Utilizing tissue and cloacal-swab sampling from hunter-harvested carcasses in 2021-2023, we identified circular DNA viruses associated with 116 waterfowl samples from nine species (American wigeons, Mexican ducks, northern shovelers, northern pintails, canvasbacks, mallards, American black ducks, gadwalls, and green-winged teals). We determined the genome sequences of viruses in the families Circoviridae (n = 18) and Hepadnaviridae (n = 2) from the 13 virus-infected birds.

View Article and Find Full Text PDF

Influenza, a highly contagious respiratory infectious disease caused by an influenza virus, is a threat to public health worldwide. Avian influenza viruses (AIVs) have the potential to cause the next pandemic by crossing the species barrier through mutation of viral genome. Here, we investigated the pathogenicity of AIVs obtained from South Korea and Mongolia during 2018-2019 by measuring viral titers in the lungs and extrapulmonary organs of mouse models.

View Article and Find Full Text PDF

Psychiatric disorders are highly comorbid, heritable, and genetically correlated [1-4]. The primary objective of cross-disorder psychiatric genetics research is to identify and characterize both the shared genetic factors that contribute to convergent disease etiologies and the unique genetic factors that distinguish between disorders [4, 5]. This information can illuminate the biological mechanisms underlying comorbid presentations of psychopathology, improve nosology and prediction of illness risk and trajectories, and aid the development of more effective and targeted interventions.

View Article and Find Full Text PDF

Gene flow and its sporadic spillover: H10 and N5 avian influenza viruses from wild birds and the H10N5 human cases in China.

Virol Sin

December 2024

School of Public Health, Fudan University, Key Lab of Public Health Safety, Ministry of Education, Shanghai 200433, China. Electronic address:

On 30 January 2024, China announced the first human case of H10N5 influenza infection. Prior to this, human cases of H10N7 and H10N8 had been reported. It is now appropriate to re-examine the evolution and future epidemiological trends of the H10 and N5 subtypes of avian influenza viruses (AIVs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!