Background: Emerging evidence reveals the key role of ferroptosis in the pathophysiological process of acute kidney injury (AKI). Our study aimed to investigate the potential ferroptosis-related gene in AKI through bioinformatics and experimental validation.
Methods: The AKI single-cell sequencing dataset was retrieved from the GEO database and ferroptosis-related genes were extracted from the GENECARD website. The potential differentially expressed ferroptosis-related genes of AKI were selected. Functional enrichment analysis was performed. Machine learning algorithms were used to identify key ferroptosis-related genes associated with AKI. A multi-factor Cox regression analysis was used to construct a risk score model. The accuracy of the risk score model was validated using receiver operating characteristic (ROC) curve analysis. We extensively explored the immune landscape of AKI using CIBERSORT tool. Finally, expressions of ferroptosis DEGs were validated and by Western blot, ICH and transfection experiments.
Results: Three hub genes (BAP1, MDM4, SLC2A1) were identified and validated by constructing drug regulatory network and subsequent screening using experimentally determined interactions. The risk mode showed the low-risk group had significantly better prognosis compared to high-risk group. The risk score was independently associated with overall survival. The ROC curve analysis showed that the prognosis model had good predictive ability. Additionally, CIBERSORT immune infiltration analysis suggest that the hub gene may influence cell recruitment and infiltration in AKI. Validation experiments revealed that SLC2A1 functions by regulating ferroptosis.
Conclusions: In summary, our study not only identifies SLC2A1 as diagnostic biomarker for AKI, but also sheds light on the role of it in AKI progression, providing novel insights for the clinical diagnosis and treatment of AKI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11006501 | PMC |
http://dx.doi.org/10.18632/aging.205669 | DOI Listing |
Curr Cancer Drug Targets
January 2025
Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
Background: Nasopharyngeal cancer (NPC) is prevalent in Southeast Asia and North Africa, which is generally associated with limited treatment options and poor patient prognosis.
Objective: Ferroptosis is a recently observed cell death modality and has been shown to link to the efficacy of different anti-cancer treatments, thus offering opportunities to the development of novel therapies. This study aims to investigate the potentiating effects of COX-2 inhibitors on ferroptosis in nasopharyngeal cancer.
Genes (Basel)
November 2024
Department of Immunology, School of Medicine, Nantong University, Nantong 226019, China.
Background: (Iron-Sulfur Cluster Assembly 1) is involved in the assembly of iron-sulfur (Fe-S) clusters, which are vital for electron transport and enzyme activity. Some studies suggest the potential involvement of in tumor progression through interactions with ferroptosis-related genes (FRGs) and the tumor immune microenvironment (TME). However, there has been no systematic analysis of its role in FRGs and the TME or its predictive value for prognosis and immunotherapy response across different cancer types.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
Ferroptosis is an iron-dependent form of cell death, which is characterized by the uncontrolled and overwhelming peroxidation of cell membrane lipids. Ferroptosis has been implicated in the progression of various pathologies, including steatotic liver, heart failure, neurodegenerative diseases, and diabetes. Targeted inhibition of ferroptosis provides a promising strategy to treat ferroptosis-related diseases.
View Article and Find Full Text PDFMol Immunol
January 2025
Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China. Electronic address:
Toxicol Res (Camb)
January 2025
Department of Respiratory and Critical Care Medicine, The People's Hospital of Mengzi, No. 89 Tianma Road, Mengzi, Yunnan Province 661100, China.
extract (GBE), a therapeutic drug, has anti-inflammatory and antioxidant effects that protect cells from harmful substances. Although GBE has been extensively studied in the prevention and treatment of lung diseases, its mechanism of action in chronic obstructive pulmonary disease (COPD) is unclear. In the present study, cigarette smoke extract (CSE) and cigarette smoke (CS) were used to induce COPD in cell and animal models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!