Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We report a highly controlled technique for the synthesis of polymer films atop a substrate by combining spin coating with ring-opening metathesis polymerization (ROMP), herein termed spin coating ROMP (scROMP). The scROMP approach combines polymer synthesis and deposition into one process, fabricating films of up to 36 cm in under 3 min with orders-of-magnitude reduction in solvent usage. This method can convert numerous norbornene-type molecules into homopolymers and random copolymers as uniform films on both porous and nonporous substrates. Film thickness can be varied from a few hundred nanometers to a few tens of micrometers based on spin speed and monomer concentration. The resulting polymers possess high (>100 kDa) and low polydispersity (PDI) (<1.2) values that are similar to ROMP polymers made in solution. We also devise a model to investigate the balance between convective monomer spin-off and polymer growth from the surface, which allows the determination of critical kinetic parameters for scROMP. Finally, translation of scROMP to porous supports enables the synthesis of thin film composite membranes that demonstrate the ability to dehydrate ethanol by pervaporation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10995903 | PMC |
http://dx.doi.org/10.1021/acsami.4c00211 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!