The analysis of cell electrophysiology for pathogenic samples at BSL3 can be problematic. It is virtually impossible to isolate infected from uninfected without a label, for example green fluorescent protein, which can potentially alter the cell electrical properties. Furthermore, the measurement of highly pathogenic organisms often requires equipment dedicated only for use with these organisms due to safety considerations. To address this, we have used dielectrophoresis to study the electrical properties of the human THP-1 cell line and monocyte-derived macrophages before and after infection with non-labelled Mycobacterium tuberculosis. Infection with these highly pathogenic bacilli resulted in changes including a raised surface conductance (associated with reduced zeta potential) and increased capacitance, suggesting an increase in surface roughness. We have also investigated the effect of fixation on THP-1 cells as a means to enable study on fixed samples in BSL1 or 2 laboratories, which suggests that the properties of these cells are largely unaffected by the fixation process. This advance results in a novel technique enabling the isolation of infected and non-infected cells in a sample without labelling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/elps.202300239 | DOI Listing |
Science
January 2025
Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
Cochlear inner hair cells (IHCs) and outer hair cells (OHCs) require different transcription factors for their cell fate stabilization and survival, suggesting separate mechanisms are involved. Here, we found that the transcription factor Casz1 was crucial for early IHC fate consolidation and for OHC survival during mouse development. Loss of Casz1 resulted in transdifferentiation of IHCs into OHCs, without affecting OHC production.
View Article and Find Full Text PDFChaos
January 2025
Institut de Neurosciences des Systèmes, Aix-Marseille University, INSERM, Marseille 13005, France.
Synchronization is fundamental for information processing in oscillatory brain networks and is strongly affected by time delays via signal propagation along long fibers. Their effect, however, is less evident in spiking neural networks given the discrete nature of spikes. To bridge the gap between these different modeling approaches, we study the synchronization conditions, dynamics underlying synchronization, and the role of the delay of a two-dimensional network model composed of adaptive exponential integrate-and-fire neurons.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Information Technologies, Faculty of Economics and Management, Czech University of Life Sciences Prague, Prague, Czech Republic.
Social networks are a battlefield for political propaganda. Protected by the anonymity of the internet, political actors use computational propaganda to influence the masses. Their methods include the use of synchronized or individual bots, multiple accounts operated by one social media management tool, or different manipulations of search engines and social network algorithms, all aiming to promote their ideology.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Dental Materials Science, Academic Center for Dentistry (ACTA), University of Amsterdam, Amsterdam, The Netherlands.
Purpose: This study aimed to determine the cytotoxicity (irritant potency) of toothpaste ingredients, of which some had known to have sensitizing properties.
Materials: From the wide variety of toothpaste ingredients, Xylitol, Propylene glycol (PEG), Sodium metaphosphate (SMP), Lemon, Peppermint, Fluoride, Cinnamon, and Triclosan and Sodium dodecyl sulphate (SDS) have been selected for evaluation of their cytotoxic properties.
Methods: Reconstructed human gingiva (RHG) were topically exposed to toothpaste ingredients at different concentrations.
Background: Regionally anticoagulated continuous renal replacement therapy with citrate is the first choice for critically ill patients with acute kidney injury. If citrate that reaches the patient exceeds the metabolic capacity, metabolic alkalosis will follow. Bicarbonate from the treatment fluids will also reach the patient and add to the bicarbonate load.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!