Background: The study aimed to determine the effects of instant controlled decompression of steam pressure, termed as ICPD (instant controlled pressure drop) on fresh tea leaves, when combined with refractance window drying (RWD) of rolled green teas during green tea manufacturing. The ICPD steam treatment pressure (TP; 0.1-0.3 MPa), treatment time (TT; 10-20 s) and refractance window drying temperature (RWDT; 70-90 °C) were used as the processing parameters for manufacturing of green tea.
Result: Response surface methodology was employed to enumerate the effects of ICPD process conditions and temperature of RWD on total phenolic content (TPC), total flavonoid content (TFC) and DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity of the green tea infusion. An optimum condition for green tea processing was found at TP 0.2 MPa, TT 20 s with RWDT at 70 °C. In comparison to made green tea manufactured without ICPD treatment, the ICPD treated green tea showed enhanced TPC, TFC and DPPH radical scavenging activity along with better colour and sensory attributes. The microstructural study of ICPD treated green tea samples showed more deformed cell surface integrity, larger stomatal pore size and cracks at the leaf surface in comparison with non-treated green tea sample.
Conclusion: Present study reveals that an ICPD treatment at 0.2 MPa for 20 s can be used as an alternative to the traditional enzyme inactivation step of hot water treatment, for green tea leaves to improve the infusion quality in terms of increased levels of TPC and TFC and DPPH radical scavenging activity. © 2024 Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jsfa.13477 | DOI Listing |
Cancer Med
March 2025
Universidad Autónoma del Estado de Morelos, Facultad de Medicina, Cuernavaca, Morelos, Mexico.
Introduction: Osteosarcoma, a highly aggressive bone cancer primarily affecting children and young adults, remains a significant challenge in clinical oncology. Metastasis stands as the primary cause of mortality in osteosarcoma patients. However, the mechanisms driving this process remain incompletely understood.
View Article and Find Full Text PDFEnviron Technol
March 2025
Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China.
The structural and abundance changes in water disinfected by tea polyphenols were investigated in high-abundance microbial communities (HAMC), medium-abundance microbial communities (MAMC), and low-abundance microbial communities (LAMC), also included the interactions within and between these communities. The antibacterial effect of tea polyphenols was observed at concentrations of 20-300 mg/L. If the tea polyphenols concentration is greater than or equal to 200 mg/L, it can continue to inhibit the growth of bacteria, and keep the total number of bacteria in 48 hours no more than100 CFU/ml, and this reflected the continuity of tea polyphenols disinfectant in the pipe network.
View Article and Find Full Text PDFJ Sci Food Agric
March 2025
College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China.
Background: White tea, an agriculturally distinctive product, exhibits significant aroma variations across different regions. Nevertheless, the mechanisms driving these differences, and distinguishing methods suitable for specific origins, have been scarcely reported. In this study, we analyzed the aroma characteristics and volatile components of 100 white tea samples from ten regions, utilizing sensory evaluation, headspace solid-phase microextraction-gas chromatography-mass spectrometry and chemometrics, then established a discrimination model.
View Article and Find Full Text PDFWellcome Open Res
February 2025
Syngenta International Research Station, Jealott's Hill, Berkshire, England, UK.
We present a genome assembly from a male specimen of (flea beetle; Arthropoda; Insecta; Coleoptera; Chrysomelidae). The genome sequence has a total length of 671.30 megabases.
View Article and Find Full Text PDFClin Transl Sci
March 2025
Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut, USA.
Previous epidemiological studies have suggested that green tea catechins, including Epigallocatechin-3-gallate (EGCG), the most abundant polyphenol in green tea, may be associated with reduced serum folate levels. This is of particular interest as women of childbearing age may be consuming EGCG from tea, dietary supplements, or involved in active clinical trials studying EGCG or green tea extract. EGCG was reported to shrink uterine fibroids in preclinical and clinical studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!