Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Flexible organic thermoelectric generators are gaining prominence in wearable electronics, leveraging body heat as an energy source. Their advancement is hindered by the scarcity of air-stable n-type organic materials with robust mechanical properties. This study introduces two new polymers (HDCN4 and HDCN8), created through polycondensation of paraformaldehyde and diamine-terminated poly(ethylene glycol) (PEGDA) with molecular weights of 4000 and 8000 g/mol into single-walled carbon nanotubes (SWCNTs). The resulting HDCN4/SWCNT and HDCN8/SWCNT composites show impressive power factors of 225.9 and 108.2 μW m K, respectively, and maintain over 90% in air for over four months without encapsulation. The HDCN4/SWCNT composite also demonstrates significant tensile strength (33.2 MPa) and flexibility (up to 10% strain), which is currently the best mechanically n-type thermoelectric material with such a high power factor reported in the literature. A thermoelectric device based on HDCN4/SWCNT generates 4.2 μW of power with a 50 K temperature difference. Additionally, when used in wearable temperature sensors, these devices exhibit high mechanical reliability and a temperature resolution of 0.1 K. This research presents a viable method to produce air-stable n-type thermoelectric materials with excellent performance and mechanical properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c00325 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!