A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Developing Air-Stable n-Type SWCNT-Based Composites with High Thermoelectric and Robust Mechanical Properties for Wearable Electronics. | LitMetric

Developing Air-Stable n-Type SWCNT-Based Composites with High Thermoelectric and Robust Mechanical Properties for Wearable Electronics.

ACS Appl Mater Interfaces

Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.

Published: April 2024

Flexible organic thermoelectric generators are gaining prominence in wearable electronics, leveraging body heat as an energy source. Their advancement is hindered by the scarcity of air-stable n-type organic materials with robust mechanical properties. This study introduces two new polymers (HDCN4 and HDCN8), created through polycondensation of paraformaldehyde and diamine-terminated poly(ethylene glycol) (PEGDA) with molecular weights of 4000 and 8000 g/mol into single-walled carbon nanotubes (SWCNTs). The resulting HDCN4/SWCNT and HDCN8/SWCNT composites show impressive power factors of 225.9 and 108.2 μW m K, respectively, and maintain over 90% in air for over four months without encapsulation. The HDCN4/SWCNT composite also demonstrates significant tensile strength (33.2 MPa) and flexibility (up to 10% strain), which is currently the best mechanically n-type thermoelectric material with such a high power factor reported in the literature. A thermoelectric device based on HDCN4/SWCNT generates 4.2 μW of power with a 50 K temperature difference. Additionally, when used in wearable temperature sensors, these devices exhibit high mechanical reliability and a temperature resolution of 0.1 K. This research presents a viable method to produce air-stable n-type thermoelectric materials with excellent performance and mechanical properties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c00325DOI Listing

Publication Analysis

Top Keywords

air-stable n-type
12
mechanical properties
12
robust mechanical
8
wearable electronics
8
n-type thermoelectric
8
thermoelectric
5
developing air-stable
4
n-type
4
n-type swcnt-based
4
swcnt-based composites
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!