Vine tea (Ampelopsis grossedentata), a traditional Chinese tea, is rich in flavonoids with various biological activities. Our study found that Vine tea total flavonoids (TFs) treatment reduced the body mass and blood lipid levels and improved the hepatic tissue morphology in mice fed the high-fat diet (HFD). In vivo, TF treatment activated the hepatic adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway, initiated autophagy, and regulated the expression levels of proteins for lipid metabolism in those HFD-fed mice. In vitro, TF treatment dramatically reduced the lipid droplets and triacylglycerol content in HepG2 and L02 cells treated with oleic acid (OA). These were associated with the activation of the AMPK/mTOR pathway and autophagy initiation in OA-treated hepatocytes. This phenotype was abolished in the presence of 3-methyladenine, an autophagy inhibitor. Our results indicated that the TF activation of AMPK/mTOR leads to the stimulation of autophagy and a decrease in the buildup of intracellular lipids in hepatocytes, showing the potential of TF as a therapeutic agent for nonalcoholic fatty liver disease. PRACTICAL APPLICATION: Vine tea, a tea drink, has been consumed by Chinese folk for over a thousand years. The result of this study will provide evidence that vine tea total flavonoids have potential use as a functional material for the prevention and amelioration of nonalcoholic fatty liver disease.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1750-3841.17025DOI Listing

Publication Analysis

Top Keywords

vine tea
20
tea total
12
total flavonoids
12
ampk/mtor pathway
8
mice fed
8
fed high-fat
8
high-fat diet
8
activation ampk/mtor
8
nonalcoholic fatty
8
fatty liver
8

Similar Publications

Carboxyl and carbonyl groups of carbon dots co-coordinated assembly with Al to emission-enhanced aggregates for sensitive sensing and efficient removal.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China; Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise 533612, Guangxi, China. Electronic address:

It is very challenging to prepare carbon dots (CDs) with aggregation-induced emission (AIE) property for simultaneous sensitive sensing and efficient removal. Herein, blue-emission CDs were facilely prepared by one-step solvothermal treatment of vine tea. Optical characterizations demonstrated that AIE phenomenon of CDs came from the restricted intramolecular motion.

View Article and Find Full Text PDF

Dihydromyricetin/montmorillonite intercalation compounds ameliorates DSS-induced colitis: Role of intestinal epithelial barrier, NLRP3 inflammasome pathway and gut microbiota.

Int J Pharm

December 2024

Department of Gastroenterology, Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Key Laboratory of Digestive Diseases, Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China. Electronic address:

Dihydromyricetin (DHM), the primary active compound in vine tea possesses various pharmacological effects such as anti-inflammatory and antioxidant properties, along with high biosafety. However, its oral delivery remains a significant challenge. Montmorillonite (MMT), the primary component of bentonite, is a commonly used drug in the clinical treatment of gastrointestinal diseases and serves as an excellent drug carrier due to its intercalation capability.

View Article and Find Full Text PDF

Vine Tea Extract Enhanced the Fermentation of Skimmed Milk by .

Food Sci Nutr

November 2024

Wuhan Sunma Biotechnology Corp. Donghu New & High Technology Development Zone Wuhan China.

Vine tea extract (VTE), from the traditional Chinese herbal tea, was added to reconstituted skimmed milk; the mixture was fermented with , and fermentation characteristics, flavonoid content, antioxidant capacity (AOC), and viability of were measured. 2 mg/mL VTE promoted growth and 8 mg/mL VTE inhibited growth, an effect consistent with observed pH changes. Total flavonoid content and AOC increased with increasing VTE dosage.

View Article and Find Full Text PDF

Vine Tea Extract (VTE) Inhibits High-Fat Diet-Induced Adiposity: Evidence of VTE's Anti-Obesity Effects In Vitro and In Vivo.

Int J Mol Sci

November 2024

Department of Food Science & Biotechnology, Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea.

This study focused on evaluating the anti-obesity effects of an extract from (Hand.-Mazz.) W.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!