Adaptive nanotube networks enabling omnidirectionally deformable electro-driven liquid crystal elastomers towards artificial muscles.

Mater Horiz

Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China.

Published: April 2024

Artificial muscles that can convert electrical energy into mechanical energy promise broad scientific and technological applications. However, existing electro-driven artificial muscles have been plagued with problems that hinder their practical applications: large electro-mechanical attenuation during deformation, high-driving voltages, small actuation strain, and low power density. Here, we design and create novel electro-thermal-driven artificial muscles rationally composited by hierarchically structured carbon nanotube (HS-CNT) networks and liquid crystal elastomers (LCEs), which possess adaptive sandwiched nanotube networks with angulated-scissor-like microstructures, thus effectively addressing above problems. These HS-CNT/LCE artificial muscles demonstrate not only large strain (>40%), but also remarkable conductive robustness (/ < 1.03 under actuation), excellent Joule heating efficiency (≈ 233 °C at 4 V), and high load-bearing capacity (/ < 1.15 at 4000 times its weight loaded). In addition, our artificial muscles exhibit real-muscle-like morphing intelligence that enables preventing mechanical damage in response to excessively heavyweight loading. These high-performance artificial muscles uniquely combining omnidirectional stretchability, robust electrothermal actuation, low driving voltage, and powerful mechanical output would exert significant technological impacts on engineering applications such as soft robotics and wearable flexible electronics.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4mh00107aDOI Listing

Publication Analysis

Top Keywords

artificial muscles
28
nanotube networks
8
liquid crystal
8
crystal elastomers
8
artificial
7
muscles
7
adaptive nanotube
4
networks enabling
4
enabling omnidirectionally
4
omnidirectionally deformable
4

Similar Publications

Titin fragment is a sensitive biomarker in Duchenne muscular dystrophy model mice carrying full-length human dystrophin gene on human artificial chromosome.

Sci Rep

January 2025

Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683‑8503, Japan.

Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations of the dystrophin gene, which spans 2.4 Mb on the X chromosome. Creatine kinase (CK) activity in blood and titin fragment levels in urine have been identified as biomarkers in DMD to monitor disease progression and evaluate therapeutic intervention.

View Article and Find Full Text PDF

Background: Computed tomography (CT)-derived low muscle mass is associated with adverse outcomes in critically ill patients. Muscle ultrasound is a promising strategy for quantitating muscle mass. We evaluated the association between baseline ultrasound rectus femoris cross-sectional area (RF-CSA) and intensive care unit (ICU) mortality.

View Article and Find Full Text PDF

Novel Design on Knee Exoskeleton with Compliant Actuator for Post-Stroke Rehabilitation.

Sensors (Basel)

December 2024

Institute of Robotics, Autonomous System and Sensing, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK.

Knee joint disorders pose a significant and growing challenge to global healthcare systems. Recent advancements in robotics, sensing technologies, and artificial intelligence have driven the development of robot-assisted therapies, reducing the physical burden on therapists and improving rehabilitation outcomes. This study presents a novel knee exoskeleton designed for safe and adaptive rehabilitation, specifically targeting bed-bound stroke patients to enable early intervention.

View Article and Find Full Text PDF

Background: Neurodegenerative diseases (NGD) encompass a range of progressive neurological conditions, such as Alzheimer's disease (AD) and Parkinson's disease (PD), characterised by the gradual deterioration of neuronal structure and function. This degeneration manifests as cognitive decline, movement impairment, and dementia. Our focus in this investigation is on PD, a neurodegenerative disorder characterized by the loss of dopamine-producing neurons in the brain, leading to motor disturbances.

View Article and Find Full Text PDF

The Effects of Artificial vs. Natural Rearing on Growth Performance, Thyroid Hormone Levels, Locomotor Activity, Carcass Traits and Meat Quality Characteristics in Chios Lambs.

Animals (Basel)

December 2024

Laboratory of Animal Husbandry, Department of Animal Production, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.

Artificial rearing (AR) of lambs is nowadays a common practice in Mediterranean dairy sheep production systems to enhance the milk available for cheese or yoghurt manufacturing. The sufficient growth of lambs in an AR system is vital for the economic success of dairy sheep farms. However, AR is often associated with negative impacts on the performance and physiology of lambs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!