Solid oxide fuel cells that operate at intermediate temperatures require efficient catalysts to enhance the inherently poor electrochemical activity of the composite electrodes. Here, a simple and practical electrochemical deposition method is presented for fabricating a PrO overlayer on lanthanum strontium manganite-yttria-stabilized zirconia (LSM-YSZ) composite electrodes. The method requires less than four minutes for completion and can be carried out under at ambient temperature and pressure. Crucially, the treatment significantly improves the electrode's performance without requiring heat treatment or other supplementary processes. The PrO-coated LSM-YSZ electrode exhibits an 89% decrease in polarization resistance at 650 °C (compared to an untreated electrode), maintaining a tenfold reduction after ≈400 h. Transmission line model analysis using impedance spectra confirms how PrO coating improved the oxygen reduction reaction activity. Further, tests with anode-supported single cells reveal an outstanding peak power density compared to those of other LSM-YSZ-based cathodes (e.g., 418 mW cm at 650 °C). Furthermore, it is demonstrated that multicomponent coating, such as (Pr,Ce)O, can also be obtained with this method. Overall, the observations offer a promising route for the development of high-performance solid oxide fuel cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202307286 | DOI Listing |
Aquaculture is one of the world's fastest-growing sectors in food production but with multiple challenges related to animal handling and infections. The disease caused by infectious salmon anemia virus (ISAV) leads to outbreaks of local epidemics, reducing animal welfare, and causing significant economic losses. The composition of feed has shifted from marine ingredients such as fish oil and fish meal towards a more plant-based diet causing reduced levels of eicosapentaenoic acid (EPA).
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia.
Water scarcity is a foremost environmental concern and is expected to hasten in the forthcoming years due to severe fluctuations in weather patterns worldwide. The present work was designed to explore the potential role of alpha-tocopherol (α-Toc), a form of vitamin E, on the morphological, physio-biochemical, and cellular antioxidant responses of two radish genotypes grown under drought conditions (38 ± 3% of field capacity). The individual and combined applications of α-Toc (100 ppm) were used as T0- Control, T1- Control + TF (TF-alpha-tocopherol), T2- Drought (D), and T3- D + TF with three replications.
View Article and Find Full Text PDFSci Rep
January 2025
Environmental Toxicology & Bioremediation Laboratory (ETBL), Department of Zoology, University of Lucknow, Lucknow, 226007, India.
Herbicide paraquat dichloride, a potent redox agent found its way to natural water bodies and influences their health; however, its impact on the reproductive health of fish is potentially less studied and requires clear investigation. This study was conducted to elucidate its effect on the gonadal health of female fish, Channa punctatus over 60 days. The 96-h LC of test herbicide was calculated as 0.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
Diatomic catalysts featuring a tunable structure and synergetic effects hold great promise for various reactions. However, their precise construction with specific configurations and diverse metal combinations is still challenging. Here, a selective etching and metal ion adsorption strategy is proposed to accurately assign a second metal atom (M) geminal to the single atom site (M-N) for constructing diatomic sites (e.
View Article and Find Full Text PDFPhysiol Rep
January 2025
Department of Kinesiology, James Madison University, Harrisonburg, Virginia, USA.
To assess the impact of thoracic load carriage on the physiological response to exercise in hypoxia. Healthy males (n = 12) completed 3 trials consisting of 45 min walking in the following conditions: (1) unloaded normoxia (UN; FO:20.93%); (2) unloaded hypoxia (UH; FO:~13.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!