Introduction: Membrane potential (), the voltage across a cell membrane, is an important biophysical phenomenon, central to the physiology of cells, tissues, and organisms. Voltage-sensitive fluorescent indicators are a powerful method for interrogating membrane potential in living systems, but most indicators are best suited for detecting changes in membrane potential rather than measuring values of the membrane potential. One promising approach is to use fluorescence lifetime imaging microscopy (FLIM) in combination of chemically synthesized dyes to estimate a value of membrane potential. However, a drawback is that chemically synthesized dyes show poor specificity of staining.

Objectives: To address this problem, we applied a chemical-genetic voltage imaging approach to FLIM to enable optical estimation of membrane potential values from genetically defined cells.

Results: In this report, we detail the characterization and evaluation of two of these systems in mammalian cells. We further validate the use of a FLIM-based chemical genetic voltage indicator in mammalian neurons.

Conclusions: Finally, we discuss opportunities for future improvements to chemical-genetic FLIM-based voltage indicators.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10951690PMC
http://dx.doi.org/10.1089/bioe.2023.0027DOI Listing

Publication Analysis

Top Keywords

membrane potential
28
optical estimation
8
membrane
8
estimation membrane
8
potential values
8
fluorescence lifetime
8
lifetime imaging
8
imaging microscopy
8
chemical-genetic voltage
8
voltage indicators
8

Similar Publications

Antimicrobial peptides (AMPs) are promising agents for treating antibiotic-resistant bacterial infections. Although discovering novel AMPs is crucial for combating multidrug-resistant bacteria and biofilm-related infections, their clinical potential relies on precise, real-time evaluation of efficacy, toxicity, and mechanisms. Optical diffraction tomography (ODT), a label-free imaging technology, enables real-time visualization of bacterial morphological changes, membrane damage, and biofilm formation over time.

View Article and Find Full Text PDF

This work proposes a fuel cell power supply system for underwater applications (e.g., autonomous underwater vehicles), where artificial gills, based on a polymer membrane, harvest the required oxygen from the ambient water.

View Article and Find Full Text PDF

Adaptive immune cells antagonize ILC2 homeostasis via SLAMF3 and SLAMF5.

Sci Adv

January 2025

Department of Allergy, the First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei 230032, China.

Type 2 innate lymphoid cells (ILC2s) mainly reside in tissues with few lymphoid cells. How their tissue residency is regulated remains poorly understood. This study explores the inhibitory role of SLAM-family receptors (SFRs) on adaptive immune cells in ILC2 maintenance.

View Article and Find Full Text PDF

Measuring virus in biofluids is complicated by confounding biomolecules coisolated with viral nucleic acids. To address this, we developed an affinity-based microfluidic device for specific capture of intact severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our approach used an engineered angiotensin-converting enzyme 2 to capture intact virus from plasma and other complex biofluids.

View Article and Find Full Text PDF

Objective: To evaluate the therapeutic effects of Kuanxiong Aerosol (KXA) on ischemic stroke with reperfusion and elucidate the underlying pharmacological mechanisms.

Methods: In vivo pharmacological effects on ischemic stroke with reperfusion was evaluated using the transient middle cerebral artery occlusion (t-MCAO) mice model. To evaluate short-term outcome, 30 mice were randomly divided into vehicle group (n=15) and KXA group (n=15).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!