Reconstitution of membrane contact by unilamellar vesicles.

Biophys Rep

State Key Laboratory of Membrane Biology, Beijing 100101, China.

Published: August 2023

AI Article Synopsis

  • Eukaryotic cells use organelles separated by membranes to perform various biochemical functions, and there's growing interest in how these organelles interact and maintain balance within the cell.
  • Current research methods focus on techniques like fluorescence and electron microscopy, but understanding the specific mechanisms of these interactions and how they respond to changes is still difficult.
  • The authors present a new approach that uses unilamellar vesicles to recreate membrane contacts, which, when combined with established methods, could enhance our understanding of how organelles communicate and function together.

Article Abstract

Eukaryotic cells compartmentalize diverse biochemical functions within organelles defined by intracellular membranes. Recent focus has intensified on studying the interactions among organelles and the role of membrane contacts in maintaining cellular balance. While analyzing these contacts mainly involves fluorescence and electron microscopy, as well as biochemical cell fractionation, understanding their mechanisms and responses to genetic and environmental changes remains challenging. Here we describe an approach employing reconstitution of membrane contacts using unilamellar vesicles. This technique offers insights into contact mechanisms when combined with established methods like fluorescence imaging and mass spectrometry, potentially deepening our understanding of membrane contacts and organelle networks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10951472PMC
http://dx.doi.org/10.52601/bpr.2023.230011DOI Listing

Publication Analysis

Top Keywords

membrane contacts
12
reconstitution membrane
8
unilamellar vesicles
8
membrane contact
4
contact unilamellar
4
vesicles eukaryotic
4
eukaryotic cells
4
cells compartmentalize
4
compartmentalize diverse
4
diverse biochemical
4

Similar Publications

In Situ-Forming, Adhesive, and Antioxidant Chitosan Hydrogels for Accelerated Wound Healing.

Biomacromolecules

January 2025

State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.

Antioxidant hydrogels that can provide a moist environment and scavenge reactive oxygen species have emerged as highly potential wound dressing materials. In situ-forming and good tissue adhesiveness will make them more desirable, as they can fill the irregular wound defect, stick to the wound, and offer intimate contact with the wound. Herein, a hydrogel dressing combining in situ-forming, good tissue adhesiveness, and excellent antioxidant capabilities was developed by simply conjugating dopamine onto carboxymethyl chitosan.

View Article and Find Full Text PDF

Objective: Aim: To investigate the effect of succinic acid on the humoral component of the immune system in rats.

Patients And Methods: Materials and Methods: The study was conducted on two groups of mature non-linear white rats (males) of similar weight (200-270 g, aged 6-8 months), with 5 animals in each group. The control group was fed a standard diet with free access to water throughout the experiment.

View Article and Find Full Text PDF

Crosstalk between GLTSCR1-deficient endothelial cells and tumour cells promotes colorectal cancer development by activating the Notch pathway.

Cell Death Differ

January 2025

Department of Pathology and International Institutes of Medicine, The Fourth Affiliated Hospital (Yiwu), Zhejiang University School of Medicine, Hangzhou, 310058, China.

Cancer stem cells (CSCs) typically reside in perivascular niches, but whether endothelial cells of blood vessels influence the stemness of cancer cells remains poorly understood. This study revealed that endothelial cell-specific GLTSCR1 deletion promotes colorectal cancer (CRC) tumorigenesis and metastasis by increasing cancer cell stemness. Mechanistically, knocking down GLTSCR1 induces the transformation of endothelial cells into tip cells by regulating the expression of Neuropilin-1 (NRP1), thereby increasing the direct contact and interaction between endothelial cells and tumour cells.

View Article and Find Full Text PDF

Protein aggregates in motoneurons, a pathological hallmark of amyotrophic lateral sclerosis, have been suggested to play a key pathogenetic role. ALS8, characterized by ER-associated inclusions, is caused by a heterozygous mutation in VAPB, which acts at multiple membrane contact sites between the ER and almost all other organelles. The link between protein aggregation and cellular dysfunction is unclear.

View Article and Find Full Text PDF

A paper-based potentiometric sensor integrated with a polymeric hydrogel has been developed for sodium ion (Na) determination in human urine. The construction of an all-solid-state ion selective electrode (s-ISE) and an all-solid-state reference electrode (s-RE) on a photo paper substrate was achieved using an inkjet printing method. For s-ISE fabrication, carbon nanotubes (CNTs) and gold nanoparticles (AuNPs) were printed on the substrate as a nanocomposite solid contact.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!