A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Muscle Architecture of Leg Muscles: Functional and Clinical Significance. | LitMetric

Background: Architectural properties of the muscles are the prime predictors of functional attributes and force-generating capacity of the muscles. This data is vital for musculoskeletal modelling and selecting the appropriate muscle-tendon units for tendon transfers.Cadaveric data for architectural properties is the gold standard and primary input for musculoskeletal modelling. There is a paucity of these datasets, especially in the leg muscles.

Methods: Sixty muscles of the anterior and lateral compartments from twelve formalin-fixed lower limbs were studied for gross architecture, including the peculiar fibre arrangements and architectural properties of muscles. Muscle weight, muscle length, fibre length, pennation angle and sarcomere length were measured. Normalised fibre length, fibre length to muscle length ratio (FL/ML ratio), and the physiological cross-sectional area (PCSA) were calculated from the obtained data.

Results: Muscles displayed a combination of architectural strategies and were partly fusiform and partly pennate. The tibialis anterior and peroneus longus were the heaviest muscles in their respective compartments and showed more extensive origin from the nearby deep facial sheets.Long fibre length and less pennation angle were seen in muscles of the extensor compartment. Potential muscle power was highest in the tibialis anterior and peroneus longus and least in the extensor hallucis longus.

Conclusions: Arching of the foot and eversion are peculiar to humans and recent in evolution. Due to the functional demand of maintaining the medial longitudinal arch and eversion, the tibialis anterior and peroneus longus have more muscle weight and larger physiological cross-sectional area and are potentially more powerful.Extensor compartment muscles were architecturally more suited for excursions because of the long fibre length and less pennation angle.This study contributes baseline normative data for musculoskeletal modelling platforms and simulation tools - an emerging area in biomechanics and tendon transfers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10952421PMC
http://dx.doi.org/10.15388/Amed.2023.30.2.12DOI Listing

Publication Analysis

Top Keywords

fibre length
20
architectural properties
12
musculoskeletal modelling
12
length pennation
12
tibialis anterior
12
anterior peroneus
12
peroneus longus
12
muscles
9
properties muscles
8
muscle weight
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!