Crop diseases can cause major yield losses, so the ability to detect and identify them in their early stages is important for disease control. Deep learning methods have shown promise in classifying multiple diseases; however, many studies do not use datasets that represent real field conditions, necessitating either further image processing or reducing their applicability. In this paper, we present a dataset of wheat images taken in real growth situations, including both field and glasshouse conditions, with five categories: healthy plants and four foliar diseases, yellow rust, brown rust, powdery mildew and Septoria leaf blotch. This dataset was used to train a deep learning model. The resulting model, named CerealConv, reached a 97.05% classification accuracy. When tested against trained pathologists on a subset of images from the larger dataset, the model delivered an accuracy score 2% higher than the best-performing pathologist. Image masks were used to show that the model was using the correct information to drive its classifications. These results show that deep learning networks are a viable tool for disease detection and classification in the field, and disease quantification is a logical next step.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10953319PMC
http://dx.doi.org/10.1111/ppa.13684DOI Listing

Publication Analysis

Top Keywords

deep learning
16
learning networks
8
field glasshouse
8
classification wheat
4
diseases
4
wheat diseases
4
deep
4
diseases deep
4
learning
4
field
4

Similar Publications

In this study, we introduce a novel approach that integrates interpretability techniques from both traditional machine learning (ML) and deep neural networks (DNN) to quantify feature importance using global and local interpretation methods. Our method bridges the gap between interpretable ML models and powerful deep learning (DL) architectures, providing comprehensive insights into the key drivers behind model predictions, especially in detecting outliers within medical data. We applied this method to analyze COVID-19 pandemic data from 2020, yielding intriguing insights.

View Article and Find Full Text PDF

FP-YOLOv8: Surface Defect Detection Algorithm for Brake Pipe Ends Based on Improved YOLOv8n.

Sensors (Basel)

December 2024

School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450000, China.

To address the limitations of existing deep learning-based algorithms in detecting surface defects on brake pipe ends, a novel lightweight detection algorithm, FP-YOLOv8, is proposed. This algorithm is developed based on the YOLOv8n framework with the aim of improving accuracy and model lightweight design. First, the C2f_GhostV2 module has been designed to replace the original C2f module.

View Article and Find Full Text PDF

Multi-modal systems extract information about the environment using specialized sensors that are optimized based on the wavelength of the phenomenology and material interactions. To maximize the entropy, complementary systems operating in regions of non-overlapping wavelengths are optimal. VIS-IR (Visible-Infrared) systems have been at the forefront of multi-modal fusion research and are used extensively to represent information in all-day all-weather applications.

View Article and Find Full Text PDF

Aiming at the severe occlusion problem and the tiny-scale object problem in the multi-fitting detection task, the Scene Knowledge Integrating Network (SKIN), including the scene filter module (SFM) and scene structure information module (SSIM) is proposed. Firstly, the particularity of the scene in the multi-fitting detection task is analyzed. Hence, the aggregation of the fittings is defined as the scene according to the professional knowledge of the power field and the habit of the operators in identifying the fittings.

View Article and Find Full Text PDF

Grapevines ( L.) are one of the most economically relevant crops worldwide, yet they are highly vulnerable to various diseases, causing substantial economic losses for winegrowers. This systematic review evaluates the application of remote sensing and proximal tools for vineyard disease detection, addressing current capabilities, gaps, and future directions in sensor-based field monitoring of grapevine diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!