A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thread-structural microneedles loaded with engineered exosomes for annulus fibrosus repair by regulating mitophagy recovery and extracellular matrix homeostasis. | LitMetric

Low back pain is among the most grave public health concerns worldwide and the major clinical manifestation of intervertebral disc degeneration (IVDD). The destruction of annulus fibrosus (AF) is the primary cause of IVDD. A sustainable and stable treatment system for IVDD is lacking because of the special organizational structure and low nutrient supply of AF. We here found that IVDD results in the impaired mitochondrial function of AF tissue, and mitochondrial autophagy (mitophagy) plays a protective role in this process. We therefore reported a thread-structural microneedle (T-MN) matching the ring structure of AF. Based on the adsorption effect of laminin, our T-MN could load with bone marrow mesenchymal stem cell-derived exosomes to envelope the regulating mitophagy microRNA (miRNA 378), named as T-MN. In general, we offered in situ locking in the defect site of AF to prevent nucleus pulposus leakage and promoted AF repair. The design of the thread structure was aimed at bionically matching the layered AF structure, thereby providing stronger adhesion. The T-MN effectively attached to AF and slowly released therapeutic engineered exosomes, and prevented IVDD progression by restoring mitophagy, promoting AF cell proliferation and migration, and inhibiting the pathological remodeling of the extracellular matrix. This functional system can be used as an excellent tool for sustained drug release and has a certain prospect in substituting the conventional treatment of IVDD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10951295PMC
http://dx.doi.org/10.1016/j.bioactmat.2024.03.006DOI Listing

Publication Analysis

Top Keywords

engineered exosomes
8
annulus fibrosus
8
regulating mitophagy
8
extracellular matrix
8
ivdd
6
thread-structural microneedles
4
microneedles loaded
4
loaded engineered
4
exosomes annulus
4
fibrosus repair
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!