A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multimodal deep learning-based diagnostic model for BPPV. | LitMetric

Multimodal deep learning-based diagnostic model for BPPV.

BMC Med Inform Decis Mak

State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing, China.

Published: March 2024

Background: Benign paroxysmal positional vertigo (BPPV) is a prevalent form of vertigo that necessitates a skilled physician to diagnose by observing the nystagmus and vertigo resulting from specific changes in the patient's position. In this study, we aim to explore the integration of eye movement video and position information for BPPV diagnosis and apply artificial intelligence (AI) methods to improve the accuracy of BPPV diagnosis.

Methods: We collected eye movement video and diagnostic data from 518 patients with BPPV who visited the hospital for examination from January to March 2021 and developed a BPPV dataset. Based on the characteristics of the dataset, we propose a multimodal deep learning diagnostic model, which combines a video understanding model, self-encoder, and cross-attention mechanism structure.

Result: Our validation test on the test set showed that the average accuracy of the model reached 81.7%, demonstrating the effectiveness of the proposed multimodal deep learning method for BPPV diagnosis. Furthermore, our study highlights the significance of combining head position information and eye movement information in BPPV diagnosis. We also found that postural and eye movement information plays a critical role in the diagnosis of BPPV, as demonstrated by exploring the necessity of postural information for the diagnostic model and the contribution of cross-attention mechanisms to the fusion of postural and oculomotor information. Our results underscore the potential of AI-based methods for improving the accuracy of BPPV diagnosis and the importance of considering both postural and oculomotor information in BPPV diagnosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10956181PMC
http://dx.doi.org/10.1186/s12911-024-02438-xDOI Listing

Publication Analysis

Top Keywords

bppv diagnosis
20
eye movement
16
multimodal deep
12
diagnostic model
12
bppv
11
movement video
8
accuracy bppv
8
deep learning
8
postural oculomotor
8
diagnosis
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!