Endocrine and cellular physiology and pathology of the insulin-like growth factor acid-labile subunit.

Nat Rev Endocrinol

University of Sydney, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia.

Published: July 2024

The acid-labile subunit (ALS) of the insulin-like growth factor (IGF) binding protein (IGFBP) complex, encoded in humans by IGFALS, has a vital role in regulating the endocrine transport and bioavailability of IGF-1 and IGF-2. Accordingly, ALS has a considerable influence on postnatal growth and metabolism. ALS is a leucine-rich glycoprotein that forms high-affinity ternary complexes with IGFBP-3 or IGFBP-5 when they are occupied by either IGF-1 or IGF-2. These complexes constitute a stable reservoir of circulating IGFs, blocking the potentially hypoglycaemic activity of unbound IGFs. ALS is primarily synthesized by hepatocytes and its expression is lower in non-hepatic tissues. ALS synthesis is strongly induced by growth hormone and suppressed by IL-1β, thus potentially serving as a marker of growth hormone secretion and/or activity and of inflammation. IGFALS mutations in humans and Igfals deletion in mice cause modest growth retardation and pubertal delay, accompanied by decreased osteogenesis and enhanced adipogenesis. In hepatocellular carcinoma, IGFALS is described as a tumour suppressor; however, its contribution to other cancers is not well delineated. This Review addresses the endocrine physiology and pathology of ALS, discusses the latest cell and proteomic studies that suggest emerging cellular roles for ALS and outlines its involvement in other disease states.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41574-024-00970-4DOI Listing

Publication Analysis

Top Keywords

physiology pathology
8
insulin-like growth
8
growth factor
8
acid-labile subunit
8
humans igfals
8
igf-1 igf-2
8
growth hormone
8
als
7
growth
6
endocrine cellular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!