An integrated multicriteria decision making framework for the selection of waste cement dust filled automotive brake friction composites.

Sci Rep

Savaria Institute of Technology, Faculty of Informatics, ELTE Eötvös Loránd University, Szombathely, 9700, Hungary.

Published: March 2024

This work discusses selecting optimal brake friction composite alternatives based on an integrated MABAC (multi-attributive border approximation area comparison) and AHP (analytic hierarchy process) approach. Therefore, non-asbestos automotive brake friction composites containing varying proportions of cement dust (50 to 0 wt%) and barium sulfate (0 to 50 wt%) were developed and tribo-evaluated on a Krauss machine following European regulations. Composite made up of 30 wt% cement dust and 20 wt% barium sulfate had the highest friction coefficient (0.361), lowest variability coefficient (0.598), and maximum recovery (123.27%). The composite with the least fading (15.36%) included 50 wt% cement dust, whereas the composite with the lowest wear (9.10 g) and the least frictional fluctuations (0.271) contained 50 wt% barium sulfate. By AHP, the friction coefficient (0.1989), fade (0.1696), recovery (0.1551), and wear (0.1412) were selected as the essential criteria in the performance assessment. Based on the MABAC ranking evaluation, the composite comprises 20 wt% barium sulfate and 30 wt% cement dust has the best tribological profile, whereas the composites of solely cement dust or barium sulfate have the poorest tribological profile. The acquired ranking results were confirmed using other decision-making models and subjected to sensitivity analysis to demonstrate their robustness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11176197PMC
http://dx.doi.org/10.1038/s41598-023-46385-5DOI Listing

Publication Analysis

Top Keywords

cement dust
24
barium sulfate
20
brake friction
12
automotive brake
8
friction composites
8
30 wt% cement
8
20 wt% barium
8
friction coefficient
8
tribological profile
8
cement
6

Similar Publications

Cement dust is a primary contributor to air pollution and is responsible for causing numerous respiratory diseases. The impact of cement dust exposure on the respiratory health of residents is increasing owing to the demand for construction associated with urbanization. Long-term inhalation of cement dust leads to a reduction in lung function, alterations in airway structure, increased inhalation and exhalation resistance, and heightened work of breath.

View Article and Find Full Text PDF

Addressing environmental challenges such as pollution and resource depletion requires innovative industrial and municipal waste management approaches. Cement production, a significant contributor to greenhouse gas emissions, highlights the need for eco-friendly building materials to combat global warming and promote sustainability. This study evaluates the simultaneous use of Sugarcane Bagasse Ash (SCBA) and Stone Dust (SD) as partial replacements by volume for cement and sand, respectively, at varying ratios in eco-strength concrete mixes designed for 28 MPa (ES-28) and 34 MPa (ES-34), emphasizing their economic and environmental benefits.

View Article and Find Full Text PDF

By volume, cement concrete is one of the most widely used construction materials in the world. This requires a significant amount of Portland cement, and the cement industry, in turn, causes a significant amount of CO emissions. Therefore, the development of concrete with a reduced cement content is becoming an urgent problem for countries with a significant level of production and consumption of concrete.

View Article and Find Full Text PDF

The majority of the carbon footprint of the cement industry originates from the decomposition of alkaline carbonates during clinker production. Recent studies have demonstrated that calcium oxides and other alkaline oxides in cement materials can sequester CO through the carbonation process and partially offset the carbon emissions generated during cement production. This study employs a comprehensive analytical model to estimate the CO uptake via hydrated cement carbonation, including concrete, mortar, construction waste, and cement kiln dust (CKD), covering major cement production and consumption regions worldwide from 1930 to 2023.

View Article and Find Full Text PDF

This study investigates the use of various industrial waste materials-silica fume (SF), cement kiln dust (CKD), calcium carbide residue (CCR), rice husk ash (RHA), and ground granulated blast furnace slag (GGBS)-as eco-friendly stabilizers for expansive clay soil (ECS). Laboratory tests were conducted to assess the impact of different proportions (3 %, 6 %, and 9 %) of these additives on the soil's physical, mechanical, and microstructural properties. Results indicated that the inclusion of industrial waste significantly improved the soil's behavior, with notable reductions in liquid limit (up to 37.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!