GAS41 modulates ferroptosis by anchoring NRF2 on chromatin.

Nat Commun

Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.

Published: March 2024

YEATS domain-containing protein GAS41 is a histone reader and oncogene. Here, through genome-wide CRISPR-Cas9 screenings, we identify GAS41 as a repressor of ferroptosis. GAS41 interacts with NRF2 and is critical for NRF2 to activate its targets such as SLC7A11 for modulating ferroptosis. By recognizing the H3K27-acetylation (H3K27-ac) marker, GAS41 is recruited to the SLC7A11 promoter, independent of NRF2 binding. By bridging the interaction between NRF2 and the H3K27-ac marker, GAS41 acts as an anchor for NRF2 on chromatin in a promoter-specific manner for transcriptional activation. Moreover, the GAS41-mediated effect on ferroptosis contributes to its oncogenic role in vivo. These data demonstrate that GAS41 is a target for modulating tumor growth through ferroptosis. Our study reveals a mechanism for GAS41-mediated regulation in transcription by anchoring NRF2 on chromatin, and provides a model in which the DNA binding activity on chromatin by transcriptional factors (NRF2) can be directly regulated by histone markers (H3K27-ac).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10957913PMC
http://dx.doi.org/10.1038/s41467-024-46857-wDOI Listing

Publication Analysis

Top Keywords

nrf2 chromatin
12
nrf2
8
anchoring nrf2
8
h3k27-ac marker
8
marker gas41
8
gas41
7
ferroptosis
5
gas41 modulates
4
modulates ferroptosis
4
ferroptosis anchoring
4

Similar Publications

Perillaldehyde pretreatment alleviates cerebral ischemia-reperfusion injury by improving mitochondrial structure and function via the Nrf2/Keap1/Trx2 axis.

Phytomedicine

December 2024

Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China; Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China. Electronic address:

Background: Perilladehyde, an extract of perillae in the Labiatae family, can produce significant anti-inflammatory and antioxidant effects. Although literature evidences the favorable effect of perillaldehyde on ischemic stroke, the exact mechanism remains blurred.

Purpose: This study attempted to explore the impact of perillaldehyde on cerebral ischemia-reperfusion injury and the related action mechanism.

View Article and Find Full Text PDF

The transsulfuration (TSS) pathway is an alternative source of cysteine for glutathione synthesis. Little of the TSS pathway in antioxidant capacity in sickle cell disease (SCD) is known. Here, we evaluate the effects of TSS pathway activation through cystathionine beta-synthase (CBS) to attenuate reactive oxygen species (ROS) and ferroptosis stresses in SCD.

View Article and Find Full Text PDF

The ferroptosis of osteoblasts has been demonstrated to play a significant role in the development of steroid-induced osteonecrosis of the femoral head (SONFH). Additionally, microRNAs (miRNAs) have been identified as regulators of SONFH progression. However, the precise role of miRNAs in the regulation of osteoblast ferroptosis remains unclear.

View Article and Find Full Text PDF

During persistent antigen stimulation, exhausted CD8 T cells are continuously replenished by self-renewing stem-like T cells. However, how CD8 T cells adapt to chronic stimulation remains unclear. Here, we show that persistent antigen stimulation primes chromatin for regulation by the redox-sensing KEAP1-NRF2 pathway.

View Article and Find Full Text PDF

cRGD-Conjugated Bilirubin Nanoparticles Alleviate Dry Eye Disease Via Activating the PINK1-Mediated Mitophagy.

Invest Ophthalmol Vis Sci

November 2024

Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China.

Purpose: The purpose of this study was to evaluate the cytoprotective effect and the mechanism of cRGD-conjugated bilirubin nanoparticles (cNPs@BR) in dry eye disease (DED).

Methods: The binding capacity and cellular uptake of cNPs@BR in human corneal epithelial cells (HCECs) were assessed by immunofluorescence. The anti-inflammation and anti-oxidative stress effects of cNPs@BR were determined by flow cytometry, immunofluorescence, Western blot, chromatin immunoprecipitation (ChIP), and ELISA assay in LPS-stimulated RAW264.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!