A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Role of compliant mechanics and motor control in hopping - from human to robot. | LitMetric

Role of compliant mechanics and motor control in hopping - from human to robot.

Sci Rep

Lauflabor Locomotion Laboratory, Institute of Sport Science and Centre for Cognitive Science, Technical University of Darmstadt, Darmstadt, 64289, Germany.

Published: March 2024

Compliant leg function found during bouncy gaits in humans and animals can be considered a role model for designing and controlling bioinspired robots and assistive devices. The human musculoskeletal design and control differ from distal to proximal joints in the leg. The specific mechanical properties of different leg parts could simplify motor control, e.g., by taking advantage of passive body dynamics. This control embodiment is complemented by neural reflex circuitries shaping human motor control. This study investigates the contribution of specific passive and active properties at different leg joint levels in human hopping at different hopping frequencies. We analyze the kinematics and kinetics of human leg joints to design and control a bioinspired hopping robot. In addition, this robot is used as a test rig to validate the identified concepts from human hopping. We found that the more distal the joint, the higher the possibility of benefit from passive compliant leg structures. A passive elastic element nicely describes the ankle joint function. In contrast, a more significant contribution to energy management using an active element (e.g., by feedback control) is predicted for the knee and hip joints. The ankle and knee joints are the key contributors to adjusting hopping frequency. Humans can speed up hopping by increasing ankle stiffness and tuning corresponding knee control parameters. We found that the force-modulated compliance (FMC) as an abstract reflex-based control beside a fixed spring can predict human knee torque-angle patterns at different frequencies. These developed bioinspired models for ankle and knee joints were applied to design and control the EPA-hopper-II robot. The experimental results support our biomechanical findings while indicating potential robot improvements. Based on the proposed model and the robot's experimental results, passive compliant elements (e.g. tendons) have a larger capacity to contribute to the distal joint function compared to proximal joints. With the use of more compliant elements in the distal joint, a larger contribution to managing energy changes is observed in the upper joints.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10957903PMC
http://dx.doi.org/10.1038/s41598-024-57149-0DOI Listing

Publication Analysis

Top Keywords

motor control
12
design control
12
distal joint
12
control
10
compliant leg
8
proximal joints
8
properties leg
8
human hopping
8
passive compliant
8
joint function
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!