This research study aimed to explore the mitigating effects of humic acid and clay on the toxicity induced by three different phthalates (DBP, DEP, DEHP) on zebrafish larvae growth. Prolonged exposure to DBP resulted in a concerning 87.33% mortality rate, significantly reduced to 7.3% when co-administered with humic acid. A similar reduction in mortality was observed for the other two phthalates (DEP and DEHP). Additionally, the introduction of phthalates with humic acid, clay, or their combination led to a significant decrease in the malformation rate in larvae. High-Performance Liquid Chromatography (HPLC) analysis of phthalates in treatments revealed a noteworthy decline in their concentration when combined with humic acid and clay. This suggests a reduced bioavailability of phthalates to larvae, aligning with diminished toxicity, lower mortality, fewer malformations, and improved organ development, as well as less oxidative stress. Furthermore, measurements of larval length and morphological scoring affirmed the protective role of humic acid and clay in promoting the normal growth of zebrafish. This study underscores the potential of environment modulators, such as humic acid and clay, as effective bioremediation agents against phthalate toxicity. The generation of reactive oxygen species (ROS), indicative of oxidative stress, was markedly higher in larvae treated solely with phthalates compared to the control. Conversely, larvae treated with a combination of phthalates and humic acid or clay exhibited a significant decrease in ROS generation, signaling a decline in oxidative stress. Histopathological analysis of adult fish subjected to various treatments revealed significant damage to vital organs like the liver and intestine when treated with phthalates alone. However, when phthalates were introduced with humic acid, clay, or both, the morphology closely resembled that of the control, reinforcing the protective role of humic acid and clay in zebrafish development against administered phthalates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.141756 | DOI Listing |
Sci Rep
December 2024
Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Falmouth, USA.
Coral reef sponges efficiently take up particulate and dissolved organic matter (DOM) from the water column and release compounds such as nucleosides, amino acids, and other dissolved metabolites to the surrounding reef via their exhalent seawater, but the influence of this process on reef picoplankton and nutrient processing is relatively unexplored. Here we examined the impact of sponge exhalent on the reef picoplankon community and subsequent alterations to the reef dissolved metabolite pool. We exposed reef picoplankton communities to a sponge exhalent water mixture (Niphates digitalis and Xestospongia muta) or filtered reef seawater (control) in closed, container-based dark incubations.
View Article and Find Full Text PDFChemosphere
December 2024
Key Laboratory of Health Intelligent Perception and Ecological Restoration of River and Lake, Ministry of Education, Hubei University of Technology, Wuhan 430068, China; Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan 430068, China. Electronic address:
Cyanobacterial blooms are prevalent globally and present a significant threat to water security. Titanium salt coagulants have garnered considerable attention due to their superior coagulation properties and the absence of metal residue risks. This paper explored the influencing factors in the coagulation process of titanium xerogel coagulant (TXC), the alterations in cell activity during floc storage, and the release of cyanobacterial organic matters, thereby determining the application scope of TXC for cyanobacterial water treatment.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China. Electronic address:
Improving lignocellulose degradation and organic matter conversion in agricultural and livestock wastes remains a great challenge. Here, the contribution of humic acid (HA) to lignocellulose degradation was investigated, focusing on the abundance of key microbial species and carbohydrate-active enzymes during aerobic composting. The results demonstrated that the addition of HA not only increased the complexity of the microbial network, but also enhanced the positive interaction between microorganism.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India.
In the current study, extraction of humic acid (HAs) from lignite fines of kutch basin of Gujarat (western India) were reported. The extraction was done by International Humic Substances Society (IHSS) method. Several analytical and spectroscopic techniques were used to characterize of extracted HAs.
View Article and Find Full Text PDFSci Total Environ
December 2024
College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China. Electronic address:
This study aimed to enhance humification and cadmium (Cd) remediation in compost by investigating the effects of three post-treatments: ultrapure water, citric acid, and ethylenediaminetetraacetic acid disodium (EDTA). The results revealed that the EDTA post-treatment significantly enhanced humification by facilitating an EDTA-Fenton-like system within compost comprising rice straw and river sediment to remediate Cd-contaminated sediment. EDTA post-treatment not only promoted humic substances and humic acid concentrations of up to 66.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!