The oxygenation process of the catalyst surface, the incident-light harvesting capability, and facile recycling of utilized photocatalysts play key role in the outstanding photocatalytic performances. The typical existing photocatalysts in powder form have many drawbacks, such as difficult separation from the treated water, insufficient surface oxygenation, poor active surface area, low incident-light harvesting ability, and secondary pollution of the environment. A great number of scientific works introduced novel and fresh ideas related to designing floating photocatalytic systems by immobilizing highly active photocatalysts onto a floatable substrate. Thanks to direct contact with the illuminated light and oxygen molecules in the interface of water/air, the photocatalytic performance is maximized through production of more reactive species, employed in the photocatalytic reactions. Furthermore, facile recovering of the utilized photocatalysts for next processes avoids secondary pollution as well as diminishes the process's price. This review highlights the performance of developed floating photocatalysts for diverse applications. Furthermore, different floating substrates and possible mechanisms in floating photocatalysts are briefly mentioned. In addition, several emerging self-floating photocatalytic systems are taken attention and discussed. Specially, coupling photo-thermal and photocatalytic effects seems to be a good strategy for introducing a new class of floating photocatalyst to utilize the free, abundant, and green sunlight energy for the aims of water desalination and purification. Despite of a large number of attempts about the floating photocatalysts, there are still plenty of rooms for more in-depth research to be carried out for attaining the required characteristics of the large scale utilizations of these materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.141686 | DOI Listing |
J Colloid Interface Sci
January 2025
School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China. Electronic address:
The limited transport of oxygen at the solid-liquid interface and the poor charge separation efficiency of single catalyst significantly impedes the generation of reactive oxygen species (ROS), thereby weakening the application potential of photocatalytic technology in water pollution control. Herein, a hollow porous photocatalytic aerogel sphere (calcium alginate/cellulose nanofibers (CA/CNF)) loaded BiOBr/TiC, combining a favourable mass transfer structure with effective catalytic centers was firstly presented. The floatability and hollow pore structure facilitated rapid O transfer via a triphase interface, thereby promoting the generation of ROS.
View Article and Find Full Text PDFGels
December 2024
Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland.
Photocatalysis has attracted more and more attention as a possible solution to environmental, water, and energy crises. Although some photocatalytic materials have already proven to perform well, there are still some problems that should be solved for the broad commercialization of photocatalysis-based technologies. Among them, cheap and easy recycling, as well as stability issues, should be addressed.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, PR China; Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University, Taizhou, Zhejiang 318000, PR China. Electronic address:
Magnetic chitosan-based materials with good adsorption-photocatalysis and magnetic properties have great prospect in wastewater treatment. In this paper, a floating magnetic molybdenum disulfide/NiFeO/chitosan integrated melamine sponges (m-MoS/CS@MS) was fabricated using chitosan as absorbent and adhesive, MoS and NiFeO as photocatalysts, and melamine sponge as support material. The m-MoS/CS@MS has a rich light-water-air-material interaction interface and can float on the water surface.
View Article and Find Full Text PDFNat Commun
November 2024
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
The direct utilization of solar energy for the artificial photosynthesis of hydrogen peroxide (HO) provides a reliable approach for producing this high-value green oxidant. Here we report on the utility of high-entropy oxide (HEO) semiconductor as an all-in-one photocatalyst for visible light-driven HO production directly from HO and atmospheric O without the need of any additional cocatalysts or sacrificial agents. This high-entropy photocatalyst contains eight earth-abundant metal elements (Ti/V/Cr/Nb/Mo/W/Al/Cu) homogeneously arranged within a single rutile phase, and the intrinsic chemical complexity along with the presence of a high density of oxygen vacancies endow high-entropy photocatalyst with distinct broadband light harvesting capability.
View Article and Find Full Text PDFACS Nano
October 2024
Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton 3800, Victoria, Australia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!