Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Children are disadvantaged compared to adults when they perceive speech in a noisy environment. Noise reduces their ability to extract and understand auditory information. Auditory-Evoked Late Responses (ALRs) offer insight into how the auditory system can process information in noise. This study investigated how noise, signal-to-noise ratio (SNR), and stimulus type affect ALRs in children and adults. Fifteen participants from each group with normal hearing were studied under various conditions. The findings revealed that both groups experienced delayed latencies and reduced amplitudes in noise but that children had fewer identifiable waves than adults. Babble noise had a significant impact on both groups, limiting the analysis to one condition: the /da/ stimulus at +10 dB SNR for the P1 wave. P1 amplitude was greater in quiet for children compared to adults, with no stimulus effect. Children generally exhibited longer latencies. N1 latency was longer in noise, with larger amplitudes in white noise compared to quiet for both groups. P2 latency was shorter with the verbal stimulus in quiet, with larger amplitudes in children than adults. N2 latency was shorter in quiet, with no amplitude differences between the groups. Overall, noise prolonged latencies and reduced amplitudes. Different noise types had varying impacts, with the eight-talker babble noise causing more disruption. Children's auditory system responded similarly to adults but may be more susceptible to noise. This research emphasizes the need to understand noise's impact on children's auditory development, given their exposure to noisy environments, requiring further exploration of noise parameters in children.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2024.03.018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!