A suite of designed protein cages using machine learning and protein fragment-based protocols.

Structure

Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA; UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095, USA. Electronic address:

Published: June 2024

Designed protein cages and related materials provide unique opportunities for applications in biotechnology and medicine, but their creation remains challenging. Here, we apply computational approaches to design a suite of tetrahedrally symmetric, self-assembling protein cages. For the generation of docked conformations, we emphasize a protein fragment-based approach, while for sequence design of the de novo interface, a comparison of knowledge-based and machine learning protocols highlights the power and increased experimental success achieved using ProteinMPNN. An analysis of design outcomes provides insights for improving interface design protocols, including prioritizing fragment-based motifs, balancing interface hydrophobicity and polarity, and identifying preferred polar contact patterns. In all, we report five structures for seven protein cages, along with two structures of intermediate assemblies, with the highest resolution reaching 2.0 Å using cryo-EM. This set of designed cages adds substantially to the body of available protein nanoparticles, and to methodologies for their creation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11162342PMC
http://dx.doi.org/10.1016/j.str.2024.02.017DOI Listing

Publication Analysis

Top Keywords

protein cages
16
designed protein
8
machine learning
8
protein fragment-based
8
protein
7
cages
5
suite designed
4
cages machine
4
learning protein
4
fragment-based protocols
4

Similar Publications

Orexin signaling in the ventral tegmental area and substantia nigra promotes locomotion and reward processing, but it is not clear whether dopaminergic neurons directly mediate these effects. We show that dopaminergic neurons in these areas mainly express orexin receptor subtype 1 (Ox1R). In contrast, only a minor population in the medial ventral tegmental area express orexin receptor subtype 2 (Ox2R).

View Article and Find Full Text PDF

Epigenetic Regulation Via Electrical Forces.

Rev Physiol Biochem Pharmacol

January 2025

Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.

Multiple epigenetic modulations occur to chromatin rather than to DNA itself and these influence gene expression or gene silencing profoundly. Both the creation of these post-translational modifications and the mechanisms of their readout are regulated significantly by electrical forces several of which are discussed. They are also influenced by phase separation which itself is driven by electrical forces.

View Article and Find Full Text PDF

Synthetic Notch (SynNotch) receptors function like natural Notch proteins and can be used to install customized sense-and-respond capabilities into mammalian cells. Here, we introduce an adaptor-based strategy for regulating SynNotch activity via fluorescein isomers and analogs. Using an optimized fluorescein-binding SynNotch receptor, we describe ways to chemically control SynNotch signaling, including an approach based on a bio-orthogonal chemical ligation and a spatially controllable strategy via the photo-patterned uncaging of an o-nitrobenzyl-caged fluorescein conjugate.

View Article and Find Full Text PDF

Although the toxic effect of Sedentary behavior (SED) on bone health has been demonstrated in the previous study, the underlying mechanisms of SED, or break SED to bone health remain unclear. In this study, we aim to investigate the effects of sedentary behavior (SED) on bone health, as well as the potential favor effects of moderate to vigorous physical activity (MVPA) and periodic interruptions of SED. To simulate SED, we used small Plexiglas cages (20.

View Article and Find Full Text PDF

The latest strain of is an altered ecological adaptation for sustainable aquaculture and is necessary to sustain stocking density and reduce physiological stress of the new strain. The present study aimed to determine the optimum stocking density, biological performance, and economic efficiency of the Nile tilapia. The 14,000 healthy seeds and uniform weight (40 ± 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!