Pancreatic β cells actively respond to glucose fluctuations through regulating insulin processing and secretion. However, how this process is elaborately tuned in circumstance of variable microenvironments as well as β cell-intrinsic states and whether its dysfunction links to metabolic diseases remain largely elusive. Here, we show that the cytosolic pH (pHc) in β cells is increased upon glucose challenge, which can be sensed by Smad5 via its nucleocytoplasmic shuttling. Lesion of Smad5 in β cells results in hyperglycemia and glucose intolerance due to insulin processing and secretion deficiency. The role of Smad5 in regulating insulin processing and secretion attributes to its non-canonical function by regulating V-ATPase activity for granule acidification. Genetic mutation of Smad5 or administration of alkaline water to mirror cytosolic alkalization ameliorated glucose intolerance in high-fat diet (HFD)-treated mice. Collectively, our findings suggest that pHc is a direct nexus in linking environmental cues with insulin processing and secretion in β cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmet.2024.02.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!