Background: Esculin, a main active ingredient from Cortex fraxini, possesses biological activities such as anti-thrombosis, anti-inflammatory, and anti-oxidation effects. However, the effects of Esculin on septic cardiomyopathy remains unclear. This study aimed to explore the protective properties and mechanisms of Esculin in countering sepsis-induced cardiac trauma and dysfunction.
Methods And Results: In lipopolysaccharide (LPS)-induced mice model, Esculin could obviously improve heart injury and function. Esculin treatment also significantly reduced the production of inflammatory and apoptotic cells, the release of inflammatory cytokines, and the expression of oxidative stress-associated and apoptosis-associated markers in hearts compared to LPS injection alone. These results were consistent with those of in vitro experiments based on neonatal rat cardiomyocytes. Database analysis and molecular docking suggested that TLR4 was targeted by Esculin, as shown by stable hydrogen bonds formed between Esculin with VAL-308, ASN-307, CYS-280, CYS-304 and ASP-281 of TLR4. Esculin reversed LPS-induced upregulation of TLR4 and phosphorylation of NF-κB p65 in cardiomyocytes. The plasmid overexpressing TLR4 abolished the protective properties of Esculin in vitro.
Conclusion: We concluded that Esculin could alleviate LPS-induced septic cardiomyopathy via binding to TLR4 to attenuate cardiomyocyte inflammation, oxidative stress and apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.intimp.2024.111897 | DOI Listing |
Background: High levels of catecholamines are cardiotoxic and associated with stress-induced cardiomyopathies. Septic patients are routinely exposed to endogenously released and exogenously administered catecholamines, which may alter cardiac function and perfusion causing ischemia. Early during human septic shock, left ventricular ejection fraction (LVEF) decreases but normalizes in survivors over 7-10 days.
View Article and Find Full Text PDFCureus
December 2024
Internal Medicine, Kempegowda Institute of Medical Sciences, Bangalore, IND.
Sepsis-induced cardiomyopathy (SICM) is a life-threatening complication of sepsis characterized by myocardial dysfunction. SICM significantly increases mortality rates in sepsis. Despite its clinical relevance, SICM lacks a unified definition and standardized diagnostic criteria, complicating early identification and treatment.
View Article and Find Full Text PDFJ Intensive Care
January 2025
Department of Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, USA.
Sepsis often leads to vasoplegia and a hyperdynamic cardiac state, with treatment focused on restoring vascular tone. However, sepsis can also cause reversible myocardial dysfunction, particularly in the elderly with pre-existing heart conditions. The Surviving Sepsis Campaign Guidelines recommend using dobutamine with norepinephrine or epinephrine alone for patients with septic shock with cardiac dysfunction and persistent hypoperfusion despite adequate fluid resuscitation and stable blood pressure.
View Article and Find Full Text PDFCan J Cardiol
December 2024
Senior Consultant Intensive Care, Royal Childrens Hospital, Melbourne, Australia; Professor Department of Critical Care, Faculty of Medicine, Melbourne University.
Whilst Extra-Corporeal Membrane Oxygenation (ECMO) for circulatory support in patients with severe septic shock, commenced in newborn infants and children in the late 1980's, ECMO has remained a controversial treatment for adults with refractory septic shock (RSS). This is fundamentally due to differences in the predominant hemodynamic response to sepsis. In newborn infants and very young children ventricular failure called Low Cardiac Output Syndrome (LCOS) is the major hemodynamic response whilst adolescents and adults have mainly vasoplegic shock.
View Article and Find Full Text PDFJ Inflamm Res
December 2024
Department of Internal and Emergency Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
Purpose: Septic cardiomyopathy (SCM) is a significant global public health concern characterized by substantial morbidity and mortality, which has not been improved for decades due to lack of early diagnosis and effective therapies. This study aimed to identify hub biomarkers in SCM and explore their potential mechanisms.
Methods: We utilized the GSE53007 and GSE207363 datasets for transcriptome analysis of normal and SCM mice.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!