Evaluation of the potential of Delta-aminolevulinic acid for simultaneous detection of bioburden and anti-microbial photodynamic therapy of MRSA infected wounds in Swiss albino mice.

J Photochem Photobiol B

Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013, India; Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094, India.

Published: May 2024

Background: The dramatic increase of drug-resistant bacteria necessitates urgent development of platforms to simultaneously detect and inactivate bacteria causing wound infections, but are confronted with various challenges. Delta amino levulinic acid (ALA) induced protoporphyrin IX (PpIX) can be a promising modality for simultaneous bioburden diagnostics and therapeutics. Herein, we report utility of ALA induced protoporphyrin (PpIX) based simultaneous bioburden detection, photoinactivation and therapeutic outcome assessment in methicillin resistant Staphylococcus aureus (MRSA) infected wounds of mice.

Methods: MRSA infected wounds treated with 10% ALA were imaged with help of a blue LED (∼405 nm) based, USB powered, hand held device integrated with a modular graphic user interface (GUI). Effect of ALA application time, bacteria load, post bacteria application time points on wound fluorescence studied. PpIX fluorescence observed after excitation with blue LEDs was used to detect bioburden, start red light mediated antimicrobial photodynamic therapy (aPDT), determine aPDT effectiveness and assess selectivity of the approach.

Results: ALA-PpIX fluorescence of wound bed discriminates infected from uninfected wounds and detects clinically relevant load. While wound fluorescence pattern changes as a function of ALA incubation and post infection time, intra-wound inhomogeneity in fluorescence correlates with the Gram staining data on presence of biofilms foci. Lack of red fluorescence from wound granulation tissue treated with ALA suggests selectivity of the approach. Further, significant reduction (∼50%) in red fluorescence, quantified using the GUI, relates well with bacteria load reduction observed post topical aPDT.

Conclusion: The potential of ALA induced PpIX for simultaneous detection of bioburden, photodynamic inactivation and "florescence-guided aPDT assessment" is demonstrated in MRSA infected wounds of mice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2024.112892DOI Listing

Publication Analysis

Top Keywords

mrsa infected
16
infected wounds
16
ala induced
12
simultaneous detection
8
detection bioburden
8
photodynamic therapy
8
induced protoporphyrin
8
protoporphyrin ppix
8
simultaneous bioburden
8
application time
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!