In this study, a carboxymethylcellulose (CMC) induced depletion attraction was developed to stabilize high internal phase Pickering emulsions (HIPPEs) as age-friendly 3D printing inks. The results demonstrated that depletion force induced the adsorption of yolk particles at the droplet interface and the formation of osmotic droplet clusters, thereby increasing the stability of HIPPEs. In addition, the rheological properties and nutrient delivery properties of HIPPEs could be adjusted by the mass ratio of yolk/CMC. The HIPPEs stabilized at yolk/CMC mass ratio 20:7.5 showed optimal printability, viscoelastic, structural recovery, and swallowability. HIPPEs have been applied to 3D printing, International Dysphagia Dietary Standardization Initiative (IDDSI) test, and in vitro digestive simulation in the elderly, indicating their attractive appearance, safe swallowability, and enhanced bioaccessibility of β-carotene. Our work provides new ideas for developing age-friendly foods with plasticity and nutrient delivery capacity by depletion attraction stabilizing HIPPEs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.139028DOI Listing

Publication Analysis

Top Keywords

depletion attraction
12
stabilize high
8
high internal
8
internal phase
8
phase pickering
8
pickering emulsions
8
nutrient delivery
8
mass ratio
8
hippes
6
carboxymethylcellulose-induced depletion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!