Code-modulated visual evoked potential (c-VEP) based brain-computer interfaces (BCIs) exhibit high encoding efficiency. Nevertheless, the majority of c-VEP based BCIs necessitate an initial training or calibration session, particularly when the number of targets expands, which impedes the practicality. To address this predicament, this study introduces a calibration-free c-VEP based BCI employing narrow-band random sequences.For the encoding method, a series of random sequences were generated within a specific frequency band. The c-VEP signals were subsequently elicited through the application of on-type grid flashes that were modulated by these sequences. For the calibration-free decoding algorithm, filter-bank canonical correlation analysis (FBCCA) was utilized with the reference templates generated from the original sequences. Thirty-five subjects participated into an online BCI experiment. The performances of c-VEP based BCIs utilizing narrow-band random sequences with frequency bands of 15-25 Hz (NBRS-15) and 8-16 Hz (NBRS-8) were compared with that of a steady-state visual evoked potential (SSVEP) based BCI within a frequency range of 8-15.8 Hz.The offline analysis results demonstrated a substantial correlation between the c-VEPs and the original narrow-band random sequences. After parameter optimization, the calibration-free system employing the NBRS-15 frequency band achieved an average information transfer rate (ITR) of 78.56 ± 37.03 bits/min, which exhibited no significant difference compared to the performance of the SSVEP based system when utilizing FBCCA. The proposed system achieved an average ITR of 102.1 ± 57.59 bits/min in a simulation of a 1000-target BCI system.This study introduces a novel calibration-free c-VEP based BCI system employing narrow-band random sequences and shows great potential of the proposed system in achieving a large number of targets and high ITR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1741-2552/ad3679 | DOI Listing |
Front Hum Neurosci
December 2024
Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands.
Introduction: As brain-computer interfacing (BCI) systems transition fromassistive technology to more diverse applications, their speed, reliability, and user experience become increasingly important. Dynamic stopping methods enhance BCI system speed by deciding at any moment whether to output a result or wait for more information. Such approach leverages trial variance, allowing good trials to be detected earlier, thereby speeding up the process without significantly compromising accuracy.
View Article and Find Full Text PDFSensors (Basel)
May 2024
Laboratory of Solid State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.
In recent years, there has been a considerable amount of research on visual evoked potential (VEP)-based brain-computer interfaces (BCIs). However, it remains a big challenge to detect VEPs elicited by small visual stimuli. To address this challenge, this study employed a 256-electrode high-density electroencephalogram (EEG) cap with 66 electrodes in the parietal and occipital lobes to record EEG signals.
View Article and Find Full Text PDFJ Neural Eng
April 2024
Laboratory of Solid State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China.
Code-modulated visual evoked potential (c-VEP) based brain-computer interfaces (BCIs) exhibit high encoding efficiency. Nevertheless, the majority of c-VEP based BCIs necessitate an initial training or calibration session, particularly when the number of targets expands, which impedes the practicality. To address this predicament, this study introduces a calibration-free c-VEP based BCI employing narrow-band random sequences.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
May 2024
In code-modulated visual evoked potential (c-VEP) based BCI systems, flickering visual stimuli may result in visual fatigue. Thus, we introduced a discrete-interval binary sequence (DIBS) as visual stimulus modulation, with its power spectrum optimized to emphasize high-frequency components (40 Hz-60 Hz). 8 and 17 subjects participated, respectively, in offline and online experiments on a 4-target asynchronous c-VEP-based BCI system designed to realize a high positive predictive value (PPV), a low false positive rate (FPR) during idle states, and a high true positive rate (TPR) in control states, while minimizing visual fatigue level.
View Article and Find Full Text PDFBrain-computer interface (BCI) systems based on code-modulated visual evoked potentials (c-VEP) stand out for achieving excellent command selection accuracies with very short calibration times. One of the natural steps to democratize their use in plug-and-play environments is to develop early stopping algorithms. These methods allow real-time detection of the minimum number of code repetitions needed to provide reliable selections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!